

Rita Lovassy

Digital Technics

Kandó Kálmán Faculty of Electrical Engineering
Óbuda University
Budapest, 2013

Preface

Digital circuits address the growing need for computer networking
communications in the technological world today. Starting from the
development of the integrated circuit in 1959 there has been a continuous
interest in the understanding of new digital devices capable of performing
complex functions.
It is the intent of this book to give an overview of the basic concepts and
applications of digital technics, from Boolean algebra to microprocessors. The
book highlights the distinction between combinational circuits and sequential
circuits, deals with numeral systems, and gives a clear overview of main digital
circuits, starting from gates through latches and flip-flops.
In the case of combinational circuits, further distinction between logic circuits
and arithmetic circuits is provided. Furthermore, in the last two chapters, the
book develops, in detail, the main memory structures, gives a basic
microcomputer organization, and introduces a typical 8-bit microprocessor.
The material in this book is suitable for one or two semesters’ course of the
bachelors’ degree program in electrical engineering or is also well-fitted for
self study. The aim is to acquaint the future engineers with the fundamentals of
digital technics, digital circuits, and with their characteristics and applications.
The book includes, as additional features, comprehensive examples and figures.
At the end of each chapter a series of problems are given, which intend to give
a broader view of the applicability of the concepts.
This book could be readily used in a completely new approach, as follows:

1. Number systems (Chapter 2)
2. Combinational logic networks (subsection 1.5) with various Boolean

logic gates followed by switches and implementation of Boolean logic
gates using transistors (subsection 3.1. Then the topics related to
Boolean algebra and combinational logic optimization, minimization
(subsections 1.1-1.4)

3. Sequential logic networks (subsection 3.2) with synchronous and
asynchronous circuits

4. Microprocessor basics (Chapter 5) including memory structures
(Chapter 4)

Contents

1 Fundamental Principles of Digital Logic 1

1.1 Boolean Algebra and its Relation to Digital Circuits 3

1.2 Truth Table and Basic Boolean Functions 7

1.3 Boolean Expressions 9

1.4 Minimization of Logic Functions 13

1.5 Combinational Logic Networks 23

2 Number Systems 30

2.1 Positional Number Systems 30

2.2 Binary Arithmetic 34

2.3 Signed Binary Numbers 38

2.4 Binary Codes and Decimal Arithmetic 40

2.5 Functional Blocks 45

3 Logic circuits and Components 56

3.1 Digital Electronic Circuits 56

3.2 Sequential Logic Networks 60

3.3 Flip-Flops 62

3.4 Registers and Counters 70

4 Semiconductor Memories and Their Properties 79

4.1 Volatile Memories 79

4.2 Nonvolatile Memories 83

4.3 Memory Expansion 86

5 Microprocessors Basics 89

5.1 Basic Microcomputer Organization 89

5.2 General Purpose Microprocessor 91

5.3 Instruction Sets 92

References 95

 1

Chapter 1

Fundamental Principles of Digital Logic

In general a signal can be defined as a value or a change in the value of a
physical quantity. The signal represents, transmits or stores the information.
The two main types of signal encountered in practice are analog and digital.
The analog signal is a continuous signal, which represents the information
directly with its value. The time evolution of the analog signal can be
represented by a continuous function. It changes continuously in time and it
can cover fully a given range, see Figure 1.1. In practice the analog signal
usually refers to electrical signals: especially voltage, but current, field strength,
frequency etc. of the signal may also represent information.
For example, in sound recording, the voice (acoustic vibrations) is transformed
by microphone (electro-acoustic transducer) into an electrical signal (voltage).
Its characteristics are frequency range, signal-to-noise ratio, distortion, etc.
Analog circuits are designed for handling and processing analog signals and
their input and output quantities are continuous. The advantages of such
circuits are their ability to define infinite amounts of data, and they also use
less bandwidth.

Figure 1.1 Analog signal

 2

The analog signals have easy processing, which is made by analog circuits.
The primary disadvantage of analog signals and analog circuits is their noise
sensitivity. As the signal is transmitted from source to a distant destination the
unwanted noise and disturbance introduced by each step in the signal path
deteriorates the signal quality.
The digital signal contains the information in discrete symbols (e.g. numbers
in coded form). It has discrete or quantized (the values of such a signal are
restricted to belong to a finite set) values. The signal can be represented by
integer numbers. One of the most common representations of a digital signal is
the binary signal, which has a set of two elements: 0 and 1.
The digital signal represents the information divided into elementary parts in a
numeric form using appropriate encoding. Sampling is performed at given
times, and the numbers are attached to it. The digital signal therefore represents
coded information, see Figure 1. 2.

Figure 1.2 Digital signal

Digital systems manage discrete quantities of information; they are suitable for
handling and processing digital signals. For example, a digital circuit is able to
manipulate speech and music which are continuous (non-discrete) quantities of
information. The signal is sampled at 8000 samples per second. Each sample is
quantized and coded by a single byte. After these steps we have discrete
quantity of information:
•The cost is 64 Kbit/s which is too much.
•Digital Signal Processing techniques allow us to bring this amount down to as
low as 2.4 Kbit/s [1].
Digital systems are less expensive, with reliable operation, are easy to
manipulate, are flexible, are immune to noise to a certain extent, etc.
Some disadvantages of digital circuits are the sampling of errors; digital
communications require greater bandwidth than analog to transmit the same
information.

 3

Different data converters are the interfaces between analog devices and digital
systems. In many applications it is need to convert an analog signal in a digital
form suitable for processing by a digital system. An analog-to-digital
converter (A/D) measures the analog signal at a certain rate and turns each
sample into some bit values. The digital-to-analog (D/A) converters produce
an analog output from a given digital input.
The next chapter introduces the basic principles of digital logic, and deals with
the study of digital systems. The digital computer is the best known of such
systems. Within a digital system the elementary units operate like switches,
being either ON or OFF. The logic circuits can be built up from any basic unit
that has two different states, one for the 1 input/output, and one for the 0
input/output. The complicated logic functions are the interconnection of a large
number of switches called logic gates. The formal mathematical tool which can
be used to describe the behaviour of logic networks is called Boolean algebra.
In this chapter various types of Boolean algebra expressions will be introduced,
and the description of logic connection and their implementation with various
logic gates will be discussed.

1.1 Boolean Algebra and its Relation to Digital
Circuits

The operation of almost all modern digital computers is based on two-valued or
binary systems. Propositions may be TRUE or FALSE, and are stated as
functions of other propositions which are connected by the three basic logical
connectives: AND, OR, and NOT. [2].
Boolean algebra was introduced in 1854 by George Boole in his book: An
Investigation of the Laws of Thought [3]. The connection between Boolean
algebra and switching circuits was established by Claude Shannon [4]. He
introduced the so called switching algebra as a main analytical tool to analyze
and design logic circuits and networks. Typically, the units are in the form of
switches that can be either ON or OFF (mapping to transistor-switches; high
voltage means logic 1 and low voltage means logic 0).
The binary logic systems use the Boolean algebra, as a mathematical system,
defined on a set of two-valued elements, in which the values of variable are 1
and 0. The binary variables are connected through logic operations. Special
elements of the set are the unity (its value is always 1) and the zero (its value is
always 0). The binary/logic variables are typically represented as letters:
A,B,C,…,X,Y,Z or a,b,c,…,x,y,z.

 4

Logic Variables

Logic variables are used to describe the occurrence of events. It can have two
values i.e. TRUE or FALSE or YES/NO which refers to the occurrence of an
event. Their meaning corresponds to the everyday meaning of the words in
question. TRUE corresponds to logic-1 and FALSE corresponds to logic-0.
Here 1 and 0 are not digits; they do not have any numeric value.
The levels represent binary integers or logic levels of 1 and 0. In active-high
logic, HIGH represents binary 1, and LOW represents binary 0. The meaning
of HIGH/LOW is connected with the usual electrical representation of logic
values, they correspond to high(er) and low(er) potentials (voltage levels) e.g.
(nominally) +5 V and 0 V, respectively.

Basic Boolean Operations

There are several Boolean operations. The most important are:
- AND (conjunction) – represented by operators “i ” or “ ∧ ”
- OR (disjunction) – represented by operators “+ ” or “ ∨ ”
- NOT (negation, inversion, complementation) - represented by operator “¬ ”
or denoted by overline (bar).
The AND and OR logic operations are two- or multi-variables, the logic
negation is a one-variable operation.
The result of AND operation is TRUE if and only if both input operands are
TRUE. In logic algebra the AND operation is also called binary/logic
multiplication. The AND operation between two variables A and B is written
as A·B or AB. The postulates for the AND operation are given in Table 1.1.

Table 1.1 Definition of the AND operation

The result of OR operation is TRUE if any input operands are TRUE. In logic
algebra the OR operation is also called binary/logic addition. The OR operation

 5

between two variables A and B is written as A+B. The postulates for the OR
operation are given in Table 1.2.

Table 1.2 Definition of the OR operation

Electrical implementation of AND and OR are series and parallel connection of
switching elements (see Figure 1.3) like electromechanical relays or n-and p-
channel FETs in CMOS circuitry (see Chapter 3).

Figure 1.3 Electrical implementation of the AND and OR operations

The result of NOT operation is TRUE if the single input value is FALSE. In
this case the complementation of A is written as A .

 6

If A = 0; F = A = 1 and if A = 1; F = A = 0

Table 1.3 Definition of the NOT operation

Each element of the set has its complementary also belonging to the set. A two-
valued Boolean algebra is defined as a mathematical system with the elements
0 and 1 and three operations, whose postulates are given in Tables 1.1 to 1.3.

Boolean Theorems

Basic identities of Boolean algebra are presented in pairs i.e. with both AND
and OR operations.
Let A be a Boolean variable and 0, 1 constants

A + 0 = A; Zero Axiom; A + A = A; Idempotence

A · 1 = A; Unit Axiom A · A = A; Idempotence

A + 1 = 1; Unit Property A + A = 1; Complement

A · 0 = 0; Zero Property A · A = 0; Complement

A = A; Involution
Let A, B and C Boolean variables
1. Commutativity: the order of operands can be reversed
A · B = B · A
A + B = B + A
2. Associativity: the operands can be regrouped
A · (B · C) = (A · B) · C = A · B · C
A + (B + C) = (A + B) + C = A + B + C
The order of operations is given by the parentheses.
3. Distributivity: the operands can be reordered
A · (B + C) = A · B + A · C

 7

A + (B · C) = (A + B) · (A + C)
Uniting theorem (absorption law)

A · (A + B) = A
A + A · B = A

These theorems are only valid in logic algebra, and they are not valid in the
ordinary algebra! In the binary system is some kind of symmetry between the
AND and OR operators which is called duality. Every equation has its dual pair
which can be generate by replacing the AND operators with OR (and vice
versa) and the constants 0 with 1s (and vice versa).

De Morgan’s Laws

De Morgan’s laws or theorems occupy an important place in Boolean algebra.
De Morgan’s theorems may be applied to the
- negation of a disjunction: A + B A B= ⋅
Since two variables are false, it’s also false that either of them is true.
- negation of a conjunction: A B A B⋅ = +
Since it is false that two variables together are true, at least one of them should
be false. The De Morgan’s theorem is an important tool in the analysis and
synthesis of digital and logic circuits. Its generalization to several variables is
stated below:

A + B + C +... A B C ...= ⋅ ⋅ ⋅

A B C ... A B C ...⋅ ⋅ ⋅ = + + +

1.2 Truth Table and Basic Boolean Functions

In order to describe the behavior and structure of a logic network it is necessary
to express its output F as a function of the input variables A, B, C….
A Boolean function domain is a set of n-tuples of 0’s and 1’s, and the range is
an element of the set {0, 1}. The values of the function are obtained by
substituting logic-0 and logic-1 for the corresponding variables in the
expression [4]. The truth table is a unique representation of a Boolean

 8

function which shows the binary value of the function for all possible
combinations of the independent variables. In case of N variables, the truth
table has N + 1 columns, and 2N rows, for all possible binary combinations for
the variables. In general, a truth table consists of
- column for each input variable
- row for all possible input values
- column for resulting function value

For given N binary variable there exist 22
N

 different Boolean functions of
these N variables.

One Variable Boolean Functions

In case of one variable, there exist four Boolean functions.
The names of these functions and the truth table (Table 1.4) are given below:
Fo

1 = 0 function constant 0
F1

1 = A function inversion (NOT)
F2

1 = A function identity
F3

1 = 1 function constant 1

A Fo

1 F1
1 F2

1 F3
1

0 0 1 0 1
1 0 0 1 1

Table 1.4 Truth table - one variable Boolean functions

Two Variable Boolean Functions

In the case of two variables the number of possible input combinations is 22 = 4,
therefore the number of possible two-variable functions is 24 = 16. Each
function describes a single or complex logic operation, see Table 1.5.

A B F0

2 F1
2 F2

2 F3
2 F4

2 F5
2 F6

2 F7
2 F8

2 F9
2 F10

2 F11
2 F12

2 F13
2 F14

2 F15
2

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 1.5 Truth table - two variables Boolean functions

 9

F0
2 = 0 function constant 0

F1
2 = A B⋅ function AND

F2
2 = A B⋅ function inhibition

F3
2 = A function identity

F4
2 = A B⋅ function inhibition

F5
2 = B function identity

F6
2 = A B + A B A B⋅ ⋅ = ⊕ function antivalency, exclusive-OR

(XOR)
F7

2 = A + B function OR
F8

2 = A + B function NOR

F9
2 = A B + A B A B⋅ ⋅ = ⊗ function equivalency, exclusive-NOR

(XNOR)
F10

2 = B function inversion
F11

2 = A + B function implication
F12

2 = A function inversion
F13

2 = A + B function implication
F14

2 = A B⋅ function NAND
F15

2 = 1 function constant 1

A logic function can be specified in various ways:
1. Truth table
2. Boolean equation, algebraic form
3. Maps (see subsection 1.4)
4. Symbolic representation, logic gates (see subsection 1.5)
The conversion of one representation of a Boolean function into another is
possible in a systematic way.

1.3 Boolean Expressions

Obtaining a Boolean expression from a truth table

In the next example a Boolean expression of three variables is obtained from a
truth table, see Table 1.6.

 10

The logic expression is a function (formula) consisting of Boolean constants
and variables connected by AND, OR, and NOT operations. The expression is:

F = ABC + ABC + ABC + ABC

i A (22) B (21) C (20) F
0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Table 1.6 Truth table for the Boolean expression

Each term represents an input variable combination for which the function
value is F = 1, consisting of all variables either in negated or in unnegated form.

Sum-of-Products (SOP) Form, the Minterm Canonical Form

The unique algebraic form readout from the truth table as AND connections of
OR operations is called Sum-of-Products (SOP) form, disjunctive canonical
form , disjunctive normal form (DNF) or minterm canonical form.

Minterm

The minterm is a term composed from the variables logic product, in which all
the variables appear exactly once, either complemented or uncomplemented.
The terms of the disjunctive canonic form are called minterm [5]. There are 2N
distinct minterms for N variables.
The generalized form is denoted by: Nim

where N is the number of independent variables, and i (minterm index) is the
decimal value of the binary number corresponding to the given combination of
the independent variables.
To illustrate the notation, consider the previous function expression

F = ABC + ABC + ABC + ABC

 11

()
3

3 3 3 3
1 2 5 6F m + m m + m 1, 2, 5, 6= + =∑

Product-of-Sums (POS) Form, Maxterm Canonical Form

The unique algebraic form readout from the truth table as OR connections of
AND operations is called Product-of-Sums (POS) form, conjunctive
canonical form, conjunctive normal form (CNF) or maxterm canonical
form .

Maxterm

There is a dual entity called maxterm which is a product of sums expansion
(conjunctive normal form). The maxterm is a term composed from the
variables logic sum, in which all the variables appear exactly once, either
complemented or uncomplemented. There are 2N distinct maxterms for N
variables [5].
The generalized form is denoted by: NIM

where N is the number of independent variables, and I (maxterm index) is the
decimal value of the binary number corresponding to the given combination of
the independent variables.
To find the conjunctive canonic form, we consider the negated function from
Table 1.6 (see rows nr. 0, 3, 4, 7)

()F A, B, C = ABC + ABC + ABC + ABC
3 3 3 3
0 3 4 7F = m + m m + m+

Based on De Morgan’s law the conjunctive canonical form of function F can
be obtained from the negated function expression by appropriate
transformations resulting in a product-of-sums (POS) i.e. in a product of
maxterms. The complemented function consists of those minterms, where the
function value is F = 0.

() ()F A, B, C F A, B, C = ABC + ABC + ABC + ABC ==

()() () () A + B + C A + B + C A + B + C A + B + C

 12

()
3

3 3 3 3
7 4 3 0F M M M M 7, 4, 3, 0= ⋅ ⋅ ⋅ = ∏

Minterm to Maxterm Conversion

Let’s start from the original function disjunctive normal form

3 3 3 3
1 2 5 6F m + m m + m= +

The expression of the negated function, also in disjunctive form (index i) is

3 3 3 3
0 3 4 7F = m + m m + m+

The function expression in conjunctive normal form, (index I = 23 -1- i) is

3 3 3 3
7 4 3 0F M M M M= ⋅ ⋅ ⋅

The relationship between the minterm indexes i of the complemented function
and the maxterm I of the uncomplemented function (written for the case of
three variables) is i + I = 7 = 23 - 1
In general, we can write for a function with N variables

i + I = 2N - 1

We can state that: all minterm is the complement of a maxterm and vice versa.

N
i

n n

2 -1-i
m = M and

N2 -1-i

n n
i M = m

The sum of all the minterms of an N variable function is 1, the product of all
the maxterms is 0.

N

i

2 -1
n

i = 0

m = 1∑ and
N

N

2 -1
n

2 -1-i
i = 0

M = 0∏

 13

1.4 Minimization of Logic Functions

The logic functions are used to design digital logic circuits. The aim is to find
an economic, small, fast and cheap implementation of the specified logic
network. In many cases the optimization, simplification of the network means
to reduce the number of electronic components, the number of gates level, the
number of inputs-, interconnections etc. Since the expressions resulting from
simplification are equivalent, the logic networks that they describe will be the
same.
Boolean function simplification methods are:
- Algebraic minimization, using Boolean algebraic transformations
- Graphic minimization, using the Karnaugh-map
- Numeric (tabular) minimization, using Quine-McCluskey- method.
- Heuristic algorithms, (e.g. algorithms like ESPRESSO).
In the next the first two methods will be discussed in detail.

Algebraic minimization using Boolean theorems

The laws and identities of Boolean algebra allow us to simplify a minterm
expression. A significant simplification of minterms yields to an equivalent
new function expression with fewer Boolean operators and variables.
Unfortunately, with this procedure it could be difficult to find the „simplest”
expression because the Boolean expressions are not algorithmic. Hence, it is
not always obvious which theorem to apply at each step. During algebraic
minimization, systematically, the basic properties and theorems of Boolean
algebra had to be applied. In this way, step by step the adjacent minterms
(differing by ONLY one variable, which appears complemented in one term
and uncomplemented in the other) are contacted, and the corresponding
variables are eliminated.
For example, to simplify the function

F = ABC + ABC + ABC + ABC

we can proceed as follows:

F = ABC + ABC + ABC + ABC () ()BC A + A + BC A + A =

 = BC + BC

 14

A similar approach can be applied to the conjunctive form, adjacent maxterms
are contacted, and the corresponding variables are eliminated.
For example, to simplify the function

()()F A + B + C A + B+ C =

we can proceed as follows:

()() ()() ()()F = A + B + C A + B+ C = A + C + B A + C + B

() ()()A + C B + B A + C + B B

= A + C

= +

Graphic minimization, Karnaugh map (K-map)

Karnaugh maps were invented by Maurice Karnaugh, a telecommunications
engineer. He developed them at Bell Labs in 1953 while studying the
application of digital logic to the design of telephone circuits. This method is
typically used on Boolean functions of two, three or four variables - past that,
other techniques are frequently used. [4].
The Karnaugh map, known also as Veitch diagram, is a unique graphic
representation of Boolean functions which provides a technique for the logic
equation minimalization. The array of cells contains the truth table information.
Mapping can be applied both to minterms and maxterms as well. The K-map of
a Boolean function of N variables consists of 2N cells and is built up from
adjacent cells having terms which differ only in one bit (place) [6]. Adjacent
terms are where only one logic variable appears in complemented and
uncomplemented form, while all others remain the same. For example:
(011) and (010), also (000) and (100)
This arrangement allows a quick and easy simplification keeping some simple
rules. In the case of 5 or more variables the adjacent cells scheme becomes
much more complex.

Minimal Sums

One method of obtaining a Boolean expression from a K-map is to select only
those minterms of the normal expression that have a logic-1 value.

 15

Two Variable Karnaugh Maps

The two-variable K-map contains four cells, covering all possible combinations
of the two variables as is shown in Figure 1.4. Each row of the truth table
corresponds to exactly one cell. If the truth table row is one the respective cell
contains a one. Usually the zeros are not indicated, and an empty cell is
considered to contain a zero. Figure 1.4 a presents also the numbering of K-
maps cells. Figure 1.4 c shows a two variable logic function truth table and the
corresponding K-map. The logic function would be 1 if
A = 0 AND B = 1 OR A = 1 AND B = 1.
If the row or column of the map in which the 1 appears is labeled by a 1, the
variable appears uncomplemented, otherwise the variable appears
complemented. Read through the K-map cells content, the function expression
is: F = AB + AB

Figure 1.4 Karnaugh maps: a) two-variable map; b) correspondence with truth table; c)example

Using the algebraic minimization, the function can be rewritten as:

()F AB + AB = A + A B = B=

 16

The K-map advantage is that the adjacent cells (which differ by ONLY one
variable, appear complemented in one cell and uncomplemented in the other)
can be grouped visually to eliminate redundant variables. Thus, grouping of the
two cells, see Figure 1.5, immediately we obtain the simplified function form.

Figure 1.5 Karnaugh map;F = B

Three - Variable Karnaugh Maps

The K-maps edges are headed using a one-step (Gray) code.
The Gray code is a series of 2N code words, each of N-bits, in such a sequence
that any adjacent code words differ only in one bit, including the first and last
words too (cyclic property).
For example, in case of N = 2 the sequence of code words is:
(00), (01), (11), (01)
The Hamming distance of two code words of equal length is the number of
positions at which the corresponding codes are different. For example, 10110
and 01101 differ in 4 positions, the distance between them is 4.The Hamming
distance between any two adjacent code words of the Gray code is one (see
Table 2.4).
When K-maps involve three variables; the cells represent the minterms of all
variables, as is shown in Figure 1.6 a. The numbering of K-maps cells is
presented in Figure 1.6 b. In Figure 1.6 c those columns and row are signed
where the corresponding variables have logic-1 value.
Top cells are adjacent to bottom cells. Left-edge cells are adjacent to right-edge
cells. Rows and columns on the opposite sides are also adjacent.
In the process of contraction and minimization the following steps and rules are
necessary:
- introduce ones in each cell of the K-map for which the corresponding
minterm in the function is equal to one.

 17

- group adjacent cells which contain ones. The number of cells in a group must
be a power of 2.
- the process is continued until no more variables can be eliminated by further
contractions. The groups cover all cells containing ones.

Figure 1.6 Three-variable Karnaugh maps

In the case of three variables K-map:
- If a group of four adjacent cells (in-line or square) is contracted, the result
yields in a single variable.
- If a group of two adjacent cells is contracted, the result yields in a two-
variable product term.
- A single cell which cannot be combined represents a three-variable term.

Example 1.1 Use the K-Map to simplify the following expression:

a) F = ABC + ABC + ABC + ABC; (Truth table, see Table 1.6)
The map is shown in Figure 1.7, and the indicated grouping leads to the
simplified expression

F = BC + BC

 18

Figure 1.7 Karnaugh map for Example 1.1 a

b) F = ABC + ABC + ABC

Figure 1.8 Karnaugh map for Example 1.1 b

Figure 1.8 shows a split rectangular grouping and a single cell which cannot be
combined (represents a three-variable term). The simplified expression is:

F = AC + ABC

In Figure 1.9 the optimal grouping of 1-cells are shown. The minimal sums for
K maps are given.

 F = B F = AC + BC + AB

Figure 1.9 Grouping on three-variable Karnaugh maps

 19

Four-Variable Karnaugh Maps

A four-variable map has 16 cells, as shown in Figure 1.10. The grouping rules
are the same as for three variables K map. The goal is to find the smallest
number of the largest possible sub cubes that cover the 1-cells.

Figure 1.10 Four-variable Karnaugh maps

Example 1.2 Use the K-map to simplify the logic function given by the
minterms

4

F = (0, 2, 5, 8, 9, 10, 11, 12, 13, 14, 15)∑

The corresponding Karnaugh map is given in Figure1.11.

 20

Figure 1.11 Karnaugh map for Example 1.2

The simplified expression is

F = A + BCD + BD

The obtained terms are called the function prime implicants. If a minterm of a
function is included in only one prime implicant, then this prime implicant is
an essential prime implicant of the function [7].
In this way the K-maps permit the rapid identification and elimination of
potential race hazards. The simplification result may not be unique.

Example 1.3 Simplify the Karnaugh-map shown in Figure 1.12.

Figure 1.12 Karnaugh map for Example 1.3

 21

The simplification result consists of 6 prime implicants:

F = AD + CD + AC + ABD + BCD + ABC

Essential prime implicants for minimum cover

F = AD + AC + BCD

Karnaugh Map for Minimalization of a Four Variables Logic Function
Expressed in Product-Of-Sums

Sometimes the Product-Of-Sums form of a function is simpler than the Sum-of
Product form. In a very similar way as in the previous subsection (Four-
Variable Karnaugh Maps), two adjacent maxterms can be contracted to a single

sum. The involution identity is applied for the logic function:F = F. In the
minterm K-map the simplifications are made using zeros, obtaining the

minimalization of F.

Example 1.4 K-map method: contracting zeros (second “optimum” solution
for the function given in Example 1.2)
Use the - map to simplify the logic function given by the minterms

4

F = (0, 2, 5, 8 - 15)∑

The corresponding Karnaugh-map is given in Figure1.13.

In the next the following rule is used: Replace F by F, and 0’s become 1’s and
vice versa.

F = ABD + ABC + ACD

F = F = ABD + ABC + ACD

()()()F = A + B + D A + B + C A + C + D

 22

Figure 1.13 Karnaugh map for Example 1.4

Incompletely Specified Logic Function

In the expression of incompletely specified logic function are such input
combinations to which the Boolean function is not specified. The function
value for these combinations is called don't care and the combination is called
don’t care condition.
In an implementation the don’t care terms value may be arbitrarily 0 or 1. The
selection point of view is if they are able to generate prime implicants in order
to obtain the most advantageous solution.
Don’t care conditions are indicated on the K- maps by dash entries. Figure 1.14
shows a Karnaugh map involving don’t care conditions.

Figure 1.14 Karnaugh map with don’t care conditions

 23

The map of Figure 1.14 can be used to obtain a minimal sum:

F = ACD + CD

1.5 Combinational Logic Networks

Logic networks are implemented with digital circuits, and in reverse, digital
circuits can be described and modeled with logic networks. For the analysis
and synthesis of logic network the Boolean algebra is used.
The logic network (logic circuit) processes the actual values of the input
variables (A, B, C, ...) and produces accordingly the output logic
functions (F1, F2, ...).
Logic networks described by truth tables or Boolean expressions can be
classified into two main groups:
1. Combinational networks: the output values depend only on the present input
variable values;
2. Sequential networks: the output values depend on both the inputs to the
operation and the result of the previous operation. Networks having the
memory property will be studied in subsection 3.2.
The combinational logic network is the simplest logic network. The logic
operations on the input variables are performed ”instantaneously” and the
result will be available on the output at the same time, (except for the time
delay due to the internal operation of the circuits). The output variables can be
represented as logic functions of the input variables. Figure 1.15 shows a
combinational logic network as a black box.

()iF = f A, B, C,..., N i = 1, 2,..., M

Figure 1.15 Combinational logic network

 24

The combinational circuit maps an input (signal) combination to an output
(signal) combination. The same input combination always implies the same
output combination (except transients). The reverse is not true. For a given
output combination different input combinations can belong.
Combinational circuit examples: binary arithmetic circuits (half-adder, full-
adder, etc.) (see subsection 2.2), binary-coded-decimal code (BCD) – seven
segment display (see subsection 2.4), various encoders and decoders,
multiplexers and demultiplexers, comparators (see subsection 2.5), etc.
The combinational circuits are the interconnections of a large number of
switches called logic gates.

Logic Gates

Logic gates as electronic circuit components are elementary building blocks of
logic circuits which implement basic Boolean functions of one or more
variables.
Figure 1.16 lists the symbols of the main logic gates with two inputs. The NOT
gate implements the function inversion, having one input. A simple triangle
symbol denotes a buffer amplifier, which serves the IDENTITY function. The
small circle on the input or output of a gate means the NOT operation. Based
on De Morgan’s identities:

() ()F = AB = A + B and F = A + B = A B

While the NOT, AND, OR functions have been designed as individual circuits
in many circuit families, by far the most common functions realized as
individual circuits are the AND-NOT (NAND) and OR-NOT (NOR) circuits.
A NAND can be described as equivalent to an AND element driving a NOT
element. Similarly, a NOR is equivalent to an OR element driving a NOT
element. The reason for this strong bias favoring inverting outputs is that the
transistors which preceded it are by nature inverters or NOT-type devices when
used as signal amplifiers.

 25

IDENTITY

NOT

AND

OR

NAND

NOR

EXCLUSIVE OR

NOT EXCLUSIVE OR (EQUIVALENCE)

Figure 1.16 Main gate symbols

 26

The EXCLUSIVE OR and NOT EXCLUSIVE OR Functions

The final two gates symbols introduced in Figure 1.16 are the EXCLUSIVE
OR gate and the NOT EXCLUSIVE OR (Equality) gate. The EXCLUSIVE
OR, (XOR) called the modulo-2-sum or “antivalency” operation is denoted by
the symbol ⊕ . The EXCLUSIVE OR function forms are:

F = A B = AB + AB

F = A B = AB + AB

⊕

⊕

By definition the value of A B ⊕ is logic-1 if and only if A and B variables
have different values. The complement of the EXCLUSIVE OR operation is
the NOT EXCLUSIVE OR (called EXCLUSIVE NOR, XNOR or
“equivalency”) operation. Their expressions are:

F = (A B) = AB + AB = (AB) (AB) = (A + B)(A + B) =⊕

 = AA + AB + BA + BB = AB + AB

F = A B = AB + AB⊕

By definition the value of A B⊕ is logic-1 if and only if A and B variables
have the same values. The EXCLUSIVE OR and NOT EXCLUSIVE OR gates
are typically available with only two inputs.

The commercial gates (exception NOT) are often designed for multiple inputs.
Generalized symbol shown in Figure 1.17 is frequently used when a single gate
has several inputs.

Figure 1.17 AND gate with 8 inputs

 27

The IEEE standard specifies two different types of symbols for logic gates [8]:
the distinctive- and rectangular-shape symbols. Figure 1.16 shows the main
distinctive-shape symbols and Figure 1.18 compares the AND and NAND gate
symbols. Both of them are frequently used and the standard says that it has no
preference between them. Since most digital designers and computer-aided
design (CAD) systems prefer the distinctive-shape symbols, these symbols are
used in this book.

Figure 1.18 Example for distinctive- and rectangular shape logic symbols

Standard Forms for Logic Functions, Synthesis Using Standard
Expressions and the Corresponding Circuits with NAND or NOR Gates

All logic functions can be specified using AND, OR and NOT operations. Both
canonical forms: Sum of Products (SOP) and Product of Sums (POS) can
specified and implemented by two-level AND-OR or OR-AND gate networks,
respectively. Because the AND, OR and NOT operations can be implemented
using either only NAND or only NOR gates, then based on the respective
canonical forms all logic functions can be implemented with homogeneous
two-level NAND or NOR gate networks. Consider the sum-of-products
expression:

F = AB + AC

The two-level AND-OR circuit consists of a number of AND gates equal to the
number of terms followed by a single OR gate. The logic circuit is shown in
Figure 1.19 a. Next we apply De Morgan’s theorem to the above function

F = AB + AC = (AB) (AC)

 28

and therefore F = F = (AB) (AC) . The corresponding circuit with NAND
gates is shown in Figure 1.19 b.

Figure 1.19 a) AND-OR circuit; b) corresponding circuit with NAND only

Although, the expression F = F = (AB) (AC) looks more complicated than

F = AB + AC, the circuit built up from NAND gates (Figure 1.19 b) has the
advantage that is built up from the same gate types and consists of less
transistors. If we start with a product-of-sums expression, the resulting circuit
will be a two-level OR-AND structure. If the POS expression is:

F = (A + B) (A + C)

Using De Morgan’s theorems, we can transform the expression as follows:

F = (A + B) (A + C) (A + B) (A + C)= +

Hence F = F = (A + B) (A + C) +
The POS function two-level OR-AND structure and the corresponding NOR
circuit is shown in Figure 1.20.

Figure 1.20 a) OR-AND circuit; b) corresponding circuit with NOR only

 29

Problems

1.1 Simplify the following expressions as far as possible:

a) 1F = ABCD + ABCD + ABCD + ABCD

b) 2F = AB + AB + ABCD

c) 3F = ABC + A+B+C

1.2 For three logic variables prove the identity:

F = A B C = A B C⊕ ⊕ ⊕ ⊕

1.3 Evaluate the following expressions for A = B = C = 1; D = 0; E = 1

a) (AB + AB) + (B + C)DE

b) A(B + E) + ABCD

c) AB(C + E) + B(D + E)

1.4 Convert the EXCLUSIVE OR function into NAND form and show the
corresponding circuit.

1.5 Write a Boolean expression for the logic diagram shown below:

1.6 Find the simplest expressions in the following Karnaugh maps:

 30

Chapter 2

Number Systems

In digital computers the information is represented in a string of ON and OFF
states of logic variables, a series of logic-1s and logic-0s. This chapter covers
the positional number systems (decimal, binary, octal, and hexadecimal), the
number conversions, representations of integer and real numbers and arithmetic
operations. Various codes and the code conversion are studied. Finally,
encoders, decoders, multiplexers, demultiplexers and various comparators are
discussed.

2.1 Positional Number Systems

In the positional number system, or so called radix-weighted positional number
system the value of a number is a weighted sum of its digits. The value
associated with a digit is dependent on its position. In general, the numbers, in
the base r (radix) system are of the form:

1 1 0 1
1 1 0 1

j j k
j j kN a r a r ... a r a r a r ... a r− − −

− − −= + + + + + + +

Where: r is the base of the number system, j, j-1,…,-(k-1),-k scalars,

1 1 0 1j j ka ,a ,..,a ,a ,a ,...,a− − natural numbers between 0 and r − 1, inclusive.

Decimal Number System

The well known decimal system is just one in the class of number systems
which belongs to the weighted positional number system. The decimal system
is the most commonly used in our daily arithmetic. The numbers in
combination of 10 symbols (digits) are called the decimal number system. This
is a grouping system based on the repetition of symbols to note the number of
each power of the base, in this case 10. The distinct digits (0 – 9) are multiplied
by the power of 10, and it is significant that the position occupied by each digit.
“ .” is called the radix point. In the case of decimal number 356.21:

2 1 0 -1 -2356 21 (3 x 10) + (5 x 10) + (6 x 10) + (2 x 10) + (1 x 10)N .= =

 31

Binary Number System

In the binary system, the base is 2 (r = 2) and the symbols are 0 and 1. These
numbers in positional code are expressed as power series of 2, and are called
bits (binary digit).
In the expression 1 1 0 1

1 1 0 1
j j k

j j kN a r a r ... a r a r a r ... a r− − −
− − −= + + + + + + +

ja denotes the most significant bit (MSB);

ka− denotes the least significant bit (LSB)

Conversion from binary to decimal

For example, consider the binary number 1101.01. This is expanded as:

() () () () () ()3 2 1 0 1 2
21101 01 1 x 2 1 x 2 0 x 2 1 x 2 0 x 2 1 x 2. − −= + + + + +

10 8 + 4 + 1 + 0.25 = 13.25=

Conversion from decimal to binary

Several methods exist to convert from decimal to binary and vice versa. In the
next two methods are presented:
Method 1 Descending Powers of Two and Subtraction
For numbers less then thousands, this method offers a very rapid and easy
technique. The steps are:

• Find the greatest power of 2 that is close and less than the decimal
number, and after that calculate the difference between them.

• Choose a next (lower) power of 2 which is close and less than the
subtraction result.

• Repeat the above mentioned operations until the sum of the powers of 2
will give the decimal number. The binary answer is composed from 1s
in the positions where the power of 2 fit into the decimal number and 0s
otherwise.

For example, find the 156 decimal number binary equivalents. We list the
power of 2 s and we “build” the corresponding number.

8 7 6 5 4 3 2 1 02 2 2 2 2 2 2 2 2

256 128 64 32 16 8 4 2 1

0 1 0 0 1 1 1 0 0

 32

Method 2 Division by Two with Remainder
If the number has a radix point, as a first step, it is important to separate the
number into an integer and a fraction part, because the two parts have to be
converted differently.
The conversion of a decimal integer part to a binary number is done by
dividing the integer part to 2 and then writing the remainders (0 or 1). Proceed
with all successive quotients the same way and accumulate the remainders.
For example, find the 56 decimal number binary equivalent:

Number divided by 2 Result Remainder

56/2 28 0 LSB
28/2 14 0
14/2 7 0
7/2 3 1
3/2 1 1
1/2 0 1 MSB

10 256 111000=

The conversion of a decimal fraction part to a binary number is done by
multiplying the fractional parts by 2 and accumulating integers.

For example, find the 0.6875 decimal number binary equivalent:

Number multiplying by 2 Integer Result

0.6875 x 2 = 1 0.3750
0.3750 x 2 = 0 0.7500
0.7500 x 2 = 1 0.5000
0.5000 x 2 = 1 0.0000

10 20 6875 0 1011. .=

And 10 256 6875 111000 1011. .=

 33

Octal and Hexadecimal Numbers

Positional number systems with base 8 (octal) and base 16 (hexadecimal) are
used in digital computers.
In octal system the eight required digits are 0 to 7, and the radix is 8.
The hexadecimal system (base 16) uses sixteen distinct symbols: numbers from
0 to 9, and letters A, B, C, D, E, F to represent values between ten to fifteen.

Conversion from octal or hexadecimal to decimal

The conversion is similar to the previous subsection Method 2. This approach
is called: Division by Eight or Sixteen with Remainder. Here the numbers in
the positional code are expressed as power series of 8 and 16.

For example:

2 1 0
8 10327 3 x 8 2 x 8 + 7 x 8 = 215= +

2 1 0 1

16 10A2D C 10 x 16 + 2 x 16 + 13 x 16 + 12 x 16 2605.75. −= =

Conversion from octal and hexadecimal to binary

For example, to convert from binary to octal, the binary number three bit
groups were separated, that could be converted directly:

011 010 111 . 001 binary number
3 2 7 . 1 octal equivalent

Vice versa:
4 5 6 . 2
100 101 110 . 010

To convert from hexadecimal to binary and reverse, the binary number four bit
groups were separated, that could be converted directly:

1010 0010 11012 = A2D16

7F316 = 0111 1111 00112

 34

The non-positional number systems uses for example Roman numerals (I = 1,
V = 5, X = 10, L = 50, C = 100, D = 500 and M = 1000).

2.2 Binary Arithmetic

Arithmetic operations with numbers in base r follow the same rules as for
decimal numbers. The addition, subtraction, multiplication and division can be
done in any radix-weighted positional number system.
In digital computers arithmetic operations are performed with the binary
number system (radix = 2). The binary system has several mathematical
advantages: i.e. easy to perform arithmetic operations and simple to make
logical decisions. The same symbols (0 and 1) are used of arithmetic and logic.
Now we will review the four basic arithmetic operations, then the handling of
the case of negative (signed) numbers.

Binary Addition

The algorithm of binary addition is similar to that of decimal numbers: aligning
the numbers with the same radix, starting the addition with the pair of least
significant digits. The half adder adds two single binary digits A and B. It has
two outputs, sum (S) and carry (C). The rules for two-digit binary addition are
the following:

A B Sum Carry
0 + 0 = 0 0
1 + 0 = 1 0
0 + 1 = 1 0
1 + 1 = 0 1 (to the next more significant bit)

The half adder logic diagram is shown in Figure 2.1.

Figure 2.1 Half adder logic diagram

 35

The rules of binary addition (without carries) are the same as the truths of the
EXCLUSIVE OR (XOR) gate [9]. Circuit implementation requires 2 outputs;
one to indicate the sum and another to indicate the carry. Two digits (bits) at
the actual position and the carry from the previous position should be added.
The process is then repeated. The full adder is a fundamental building block in
many arithmetic circuits, which adds three one-bit binary numbers (C, A, B)
having two one-bit binary output numbers, a sum (S) and a carry (C1).

C A B S C1
0 + 1 + 0 = 1 0
0 + 1 + 1 = 0 1 (to the next more significant bit)
1 + 1 + 0 = 0 1 (to the next more significant bit)
1 + 1 + 1 = 1 1 (to the next more significant bit)

The full adder logic diagram is shown in Figure 2.2.

Figure 2.2 Full adder logic diagram

The following is an example of binary addition:

 36

Binary Subtraction

In many cases binary subtraction is done in a special way by binary addition.
One simple building block called adder can be implemented and used for both
binary addition and subtraction. Using the borrow method; the basic rules are
summarized in the next:

Borrow A B Difference
0 0 - 0 = 0
0 1 - 0 = 1
0 1 - 1 = 0
0 0 - 1 = 1 and borrow 1 from the next more significant bit
1 0 - 0 = 1 and borrow 1 from the next more significant bit
1 0 - 1 = 0 and borrow 1 from the next more significant bit
1 1 - 0 = 0
1 1 - 1 = 1 and borrow 1 from the next more significant bit

When a larger digit is to be subtracted from a smaller digit it is necessary to
“borrow” from the next-higher-order digit position. The following example
illustrates binary subtraction:

Binary Multiplication

The rules for two-digit binary multiplication are the next:

A B Product
0 x 0 = 0
1 x 0 = 0
0 x 1 = 0
1 x 1 = 1 and no carry or borrow bits

 37

The rules of binary multiplication are the same as the truths of the AND gate
[9]. In a very similar way to the decimal multiplication an array of partial
products are formed and binary added. The following is an example of binary
multiplication:

 1 1.12 Multiplicand
 x 1 0 12 Multiplier

 1 1 1 Array of partial product (1 x 111)
 + 0 0 0 Array of partial product (00 x 111)

 0 1 1 1
 + 1 1 1 Array of partial product (100 x 111)

 1 0 0 1.12 Product

Binary Division

Binary division is the repeated process of subtraction, just as in decimal
division [9]. A trial quotient digit is selected and multiplied by the divisor. The
product is subtracted from the dividend to determine whether the trial quotient
is correct. The principle of binary division is seen by the next example:

 38

2.3 Signed Binary Numbers

The positive integers and the number zero can be represented as unsigned
binary numbers using an n-bit word. When working with any kind of digital
electronics in which numbers are being represented, it is important to
distinguish both positive and negative binary numbers. The three
representations of signed binary numbers will be discussed in the next. These
approaches involve using one of the digits of the binary number to represent
the sign of the number [10].

Sign-Magnitude Representation

To mark the positive and negative quantities instead of using plus and minus
sign we will use two additional symbols 0 and 1. In this approach the
information’s left bit (the most-significant bit, MSB) is the sign bit, where 0
denotes positive and 1 denotes negative value. The rest of the bits represent the
number magnitude. This method is simple to implement, and is useful for
floating point representation. The disadvantage of sign-magnitude
representation is that the sign bit is independent of magnitude, and
mathematical operations are more difficult. It is very important to not confuse
this representation with unsigned numbers! Table 2.1 illustrates this concept,
including all three representations of signed binary numbers using 4 bits. Here,
the MSB bit (sign bit) is separated from the remaining 3 bits which denote the
magnitude in the binary number system. It can be noted that 0 has two different
representations, and can be both + 0 and – 0!

1’s-Complement Representation

The simplest of these methods is called 1’s complement, which can be derived
by just inverting all the bits in the number. Reversing the digits, by changing
all the bits that are 1 to 0 and all the bits that are 0 to 1 is called complementing
a number. The positive numbers 1’s complement representation is the same as
in the sign-magnitude approach and the 0 has again two different
representations. In this approach the MSB bit also shows the sign of the
number (all of the negative values begin with a 1, see Table 2.1).

 39

2’s-Complement Representation

The 2's complement number representation is most commonly used for signed
numbers on modern computers. An easier way to compute the 2’s complement
of a binary integer is to consider the 1’s complement of the number plus 1. The
8 bit representations of the integer number – 9 are:

Signed-Magnitude representation: 1|0001001
1’s complement: 1|1110110
2’s complement: 1|1110110

+ 1
1|1110111

For further examples using 4 bits see Table 2.1.

Signed decimal Sign-magnitude 1’s complement 2’s complement
equivalent representation representation representation

 +7 0 111 0 111 0 111
 +6 0 110 0 110 0 110
 +5 0 101 0 101 0 101
 +4 0 100 0 100 0 100
 +3 0 011 0 011 0 011
 +2 0 010 0 010 0 010
 +1 0 001 0 001 0 001
 0 0 000 0 000 0 000
 1 000 1 111
 -1 1 001 1 110 1 111
 -2 1 010 1 101 1 110
 -3 1 011 1 100 1 101
 -4 1 100 1 011 1 100
 -5 1 101 1 010 1 011
 -6 1 110 1 001 1 010
 -7 1 111 1 000 1 001
 -8 --- --- 1 000

Table 2.1 Three representations of signed binary numbers using 4 bits

 40

Addition with 2’s Complement Representation

If the complement representation of signed numbers is used there is no need for
both adder and subtractor unit in a computer.
Let’s assume two n-bit signed numbers M and N represented in signed 2’s
complement format. The sum M + N can be obtained including their sign bits
to get the correct sum. A carry out of the sign bit position is discarded. In the
next, addition in the 2‘s complement representation examples are given (using
5 bits).

If the sum of two n-bit numbers results in an n + 1 number an overflow appears.
The first step in the detection of such an error is the examination of the sign of
the result. The overflow detection can be implemented using either hardware or
software, and depends on the signed or unsigned number system used.

2.4 Binary Codes and Decimal Arithmetic

The binary number system, handling only two digit symbols, is the simplest
system for a digital computer. From the user point of view it is easy to compute
and operate with decimal numbers. A combination of binary and decimal
approaches, keeping their advantages, result in a system in which the digits of
the decimal system are coded by groups of binary digits. The basic concept is
to convert decimal numbers to binary, to perform all arithmetic calculations in
binary, and then convert the binary result back to decimal.

 41

The best known scheme to code the decimal digits is the 8421 binary-coded-
decimal (8421 BCD) scheme. In this weighted code 10 decimal digits are
represented by at least 4 binary digits. In 8421 BCD code each bit is weighted
by 8, 4, 2 and 1 respectively. For example the 8421 BCD representation of the
decimal number 3581 is 0011 0101 1000 0001.
Beside 8421 BCD code other weighted codes have been used. These codes
have fixed weights for different binary positions. It has been shown in [11] that
exist 17 different set of weights possible for a positively weighted code:
(3,3,3,1), (4,2,2,1), (4,3,1,1), (5,2,1,1), (4,3,2,1), (4,4,2,1), (5,2,2,1), (5,3,1,1),
(5,3,2,1), (5,4,2,1), (6,2,2,1), (6,3,1,1), (6,3,2,1), (6,4,2,1), (7,3,2,1), (7,4,2,1),
(8,4,2,1). It is also possible to have a weighted code in which some of the
weights are negative, as in the 8, 4, -2, -1 code shown in Table 2.2.

Decimal 8421 Excess-3 2-out-of-5
digit binary code code code

 0 0000 0011 11000
 1 0001 0100 00011
 2 0010 0101 00101
 3 0011 0110 00110
 4 0100 0111 01001
 5 0101 1000 01010
 6 0110 1001 01100
 7 0111 1010 10001
 8 1000 1011 10010
 9 1001 1100 10100

Table 2.2 Binary codes for the decimal digits

This code has the useful property of being self-complementing: if a code word
is formed by complementing each bit individually (changing 1's to 0's and vice
versa), then this new code word represents the 9's complement of the digit to
which the original code word corresponds [12].
The non-weighted codes don’t have fixed weights for different binary positions.
For example the excess-3 code is derived by adding 00112 = 310 to the 8421
BCD representation of each decimal digit. The 2-out-of-5 code shown in Table
2.2 has the property that each code word has exactly two 1's.

 42

Decimal Addition Using 8421 BCD Code

The 8421 BCD code is widely used and it is simplified as BCD code. Because
of the popularity of this code in the next the addition operation is presented.
Addition is performed by individually adding the corresponding digits of the
decimal numbers expressed in 4-bit binary groups starting from right to left.
[13]. If the result of any addition exceeds nine (1001) then the number six
(0110) must be added to the sum to account for the six invalid BCD codes that
are available with a 4-bit number.
Perform the following decimal additions (24 + 15) in BCD code.

When considering the two decimal numbers 26 and 37, it can be observed that
the sum 6 + 7 = 13 > 9 and a correction is necessary to skip over the six illegal
combinations (by adding a correction factor of 610 = 01102). Thus, we have

Consider the following addition: 28 + 59. When the sum of the LSB digits of
the two numbers (8 + 9) is greater than 15 it is necessary to introduce a
correction. In this approach a correct code group results but with an incorrect
sum.

 43

7-Segment Code

A very useful decimal code is the 7-segment code which is able to show
numeric info on seven-segment displays. The 7-segment display (see Figure
2.3) consist of 7 LEDs (light emitting diodes), each one controlled by an input
where 1 means “on”, 0 means “off”. The decimal digit and the corresponding
7-segment code are shown in Table 2.3.
.

Figure 2.3 7-segment display Table 2.3 Decimal digit and the corresponding

7-segment code

Gray Code

The most useful unit distance code is the Gray code which is shown in Table
2.4. This unweighted code has such a sequence that any adjacent code words
differ only in one bit (see subsection 1.4 Three - Variable Karnaugh Maps).
The attractive feature of this code is the simplicity of the algorithm for
translating from the binary number system into the Gray code. [12]

Table 2.4 The 3 bit Gray code

 44

This algorithm is described by the expressions:
0 0 1

1 1 2

2 2

g b b

g b b

g b

= ⊕
= ⊕
=

Unit-distance codes, which could minimize errors, are used in devices for
converting analog or continuous signals such as voltages or shift rotations into
binary numbers which represent the magnitude of the signal. Such a device is
called an analog-digital converter [12].

Error Detection

In general data transfer between various parts of a computer system, the
transmission over communication channels or their storage in memory is not
completely error free. For the purpose of increasing system reliability, special
features are included in many digital systems, i.e. to introduce some
redundancy in encoding the information handled in the system. For example,
the error detecting properties of the 2-out-of-5 code is based on its feature to
have exactly two 1’s within a code group. Not all codes have error detecting
capability.
A simple error detecting method is the calculus of a parity bit , which is then
appended to original data. The parity type could be: even or odd. The parity bit
is added to each code word so as to make the total number of 1's in the
resultant string even or odd. [14].
For example, when the parity type is even, the result is an even number of 1’s
100 0100→0 100 0100
110 0100→1 100 0100
In data transmission, the sender adds the parity bit (message bit) to the existing
data bits before forwarding it which is compared to the expected parity (check
bit) calculated from the receiver.
Generating even parity bit is just an XOR function. In a similar way,
generating odd parity bit is just an XNOR function.
To minimize the disadvantages of this single error detection method (cannot
determine which bit position has a problem) the following rules have to be
observed. The necessary and sufficient conditions for any set of binary words
to be a single-error-correcting code is that the minimum distance between any
pair of words be three [12].

 45

In general, if the Hamming distance is D (see subsection 1.4), Hamming
Distance is equal to the number of bit positions in which 2 code words differ),
[14] to detect k-single bit error, minimum Hamming distance is
D (min) = k + 1
The Hamming Code is a type of Error Correcting Code (ECC) which adopts
parity concept, having more than one parity bit, providing error detection and
correction mechanism. To correct k errors D (min) = 2k + 1 is required.

Alphanumeric Codes

Several codes have been proposed to represent numeric information and
various characters. The nonnumeric ones are called alphanumeric codes. The
characters are for example: alphabet letters, special symbols, punctuation
marks, special control operations. The commonly used alphanumeric code is
the American Standard Code for Information Interchange (ASCII). The 7-bit
version of this code is frequently completed with an eighth bit, the parity bit.
Another encoding, Unicode is a computing industry standard for the consistent
encoding [15]. It can be implemented by so called UTF-8, UTF-16 character
encodings. For example UTF-8 uses one byte for any ASCII characters, and up
to four bytes for other characters.

2.5 Functional Blocks

The traditional process of logic synthesis is based on the application of logic
gates. Its more modern variant makes the use of a composition of smaller,
simpler circuits and programmable logic devices. However in many cases it is
more advantageous to use a logic synthesis procedure based on the application
of logic functional blocks.
In this subsection we will give an overview of some important and useful basic
combinational functional blocks. In order to design new circuits, design
hierarchy, the so called Top-Down, Bottom-Up, Meet in the Middle Design
Approaches or Computer-Aided Design (CAD) tools could be used [16].

Code Converter

A code converter is an important application of combinational networks (see
subsection 1.5). Such a digital system is able to transform information from
one code to another. For example a BCD-to-Excess-3 code converter is useful

 46

in digital arithmetic [16]. To understand the „machine language” a set of code
conversions has to be applied. Figure 2.4 shows a possible application, where a
signal in Gray code transmitted by a position sensor is received by a Gray-
Binary converter (a typical application for Gray code is in absolute position
sensing) and the result is converted in normal (8421) BCD code. At the end,
the display unit applies BCD to 7-segment code conversion. In this way the
output can be easy evaluated.

Figure 2.4 Code conversions

Code converters are typically multiple input-multiple output combinational
circuits. They can be realized by appropropriate gate networks or using Read
only Memories.

Binary Decoders

A combinational circuit that converts binary information from n coded inputs
to a maximum 2n coded outputs is called n-to-2n decoder, more generally n-to-
m decoder, m ≤ 2n [17]. Figure 2.5 shows a binary decoder as a black box.

Figure 2.5 Binary decoder as a black box

Enable input (E): it must be on (active) for the decoder to function, otherwise
its outputs assume a single ”disabled” output code word.

 47

2-to-4 Decoder

In a 2-to 4 decoder, 2 inputs, A0, A1 are decoded into 22 = 4 outputs, D0
through D3. Each output represents one of the minterms of the 2 input
variables. The truth table and the logic circuit without Enable input are given in
Figure 2.6.

Figure 2.6 2-to-4 line decoder without Enable; a) truth table, b) gate level logic diagram

Decoder output lines implement minterm functions. Any combinational circuit
can be constructed using decoders and OR gates [18]. The 2-to-4 decoder truth
table and the logic circuit with Enable input are given in Figure 2.7. In this case
the additional gate level produces time delay, which can be avoided by using 3
input AND gates instead of 2 input AND gates in Figure 2.6 b.

Figure 2.7 2-to-4 line decoder with Enable a) truth table; b) gate level logic diagram

 48

Decoder expansion means to construct larger decoders from small ones. The
next example (see Figure 2.8) shows the interconnection of two 2-to-4
decoders in order to have the required 3-to-8 decoder size. If A2 = 0: enables
top decoder, when A2 = 1: enables bottom decoder.

Figure 2.8 3-to-8 decoder from 2-to-4 decoders

Binary Encoders

An encoder is a multi-input combinational logic circuit that executes the
inverse operation of a decoder. In general, it has 2n input lines and n output
lines. The output lines generate the binary equivalent of the input line whose
value is 1 [19]. Figure 2.9 shows a binary encoder as a black box.

Figure 2.9 Binary encoder as a black box

 49

If the enable signal E = 0 then all outputs are 0 else Yj = F (X0, X1,…,X2
n
-1),

j = 0...n-1. If the valid signal is equal to 1 (V = 1) the valid code is present at
the outputs; otherwise V = 0.

4-to-2 Encoder

Using a 4-to-2 encoder, 4 inputs, D0 - D3 are encoded into 2 outputs, A0 and
A1. The truth table and the logic circuit without Enable input are given in
Figure 2.10.

A1 = D3 + D2

A0 = D3 + D1

V = D3D2D1D0 + D3D2D1D0 + D3D2D1D0 + D3D2D1D0

Figure 2.10 4-to-2 line encoder without Enable truth table and gate level logic diagram

 50

Priority Encoders

Multiple asserted inputs are permitted; and one has priority over all others.
A valid output indicator , designated by V, is set to 1 only when one or more
inputs are equal to 1. V = D3+ D2+ D1+ D0 by inspection. Figure 2.11 shows
the truth table and the corresponding logic circuit [16] of a 4-to-2 priority
encoder

Figure 2.11 Priory encoder truth table and logic circuit

 51

Multiplexer (MUX)

Multiplexers work as selectors, which choose one input to pass through to the
output. A 2 x 1 multiplexer has two data inputs (I0 and I1), one select input S
and one data output (D). Figure 2.12 a) shows the internal structure of a two
input MUX. At the output of the simple AND - OR combinational circuit if S =
0, appears the I0 value, and if S = 1, I1’s input value passes through.
In general, an M x 1multiplexer has M data inputs, log2 (M) select inputs, and
one output. Using another notation, if M = 2n, the 2n-to-1 multiplexer works
with 2n data inputs, n select inputs and one output.

Figure 2.12 2-to-1 multiplexer

N-bit M x l Multiplexer

In many applications multiplexers are often used to pass through N-bit data
items [20]. For example, if the inputs A and B consist of four-four bits (a3, a2,
a1, a0, and b3, b2, b1, b0 respectively) we need four 2 x 1 MUXes (called 4-bit
2 x 1 MUX) to multiplex the inputs to four-bit output C (denoted by c3, c2, c1,
c0). Figure 2.13 shows the internal design using four 2 x 1 MUXes and the
corresponding block diagram. The 2 x 1 multiplexers are connected to the same
select input.
Any Boolean function of n variables can be implemented using a 2n-to-1
multiplexer [16].

 52

Figure 2.13 4-bit 2 x 1 MUX a) internal design; b) block diagram

Demultiplexer

The demultiplexer is basically a decoder, which performs the inverse of a
multiplexing operation. In general, a 1-to-2n demultiplexer has one data input,
which is transmitted to one of the 2n possible output lines. The selection of the
proper output depends on the n select lines.

Comparators

A comparator is used to compare binary numbers in order to indicate if they are
equal or if one is greater then other. A comparator is used in applications where
some varying signal level is compared to a fixed level (usually a voltage
reference) [21].

 53

Equality (Identity) Comparator

In general, a combinational circuit able to compare two n-bit inputs generating
a 1 or a 0 at its output, depending on whether the inputs are the same or not, is
called an equality comparator. Comparator design first step is to write the
combinational circuit truth table from which those situations (lines) are
selected where all the input bits are equal. The next step is the comparator
output function minimalization which is complicated for more than 4-bit input
binary numbers. A simpler design can be obtained by recalling the XNOR gate
(see subsection 1.5) property whose output is set to 1 if the gate’s two input
bits are equal. For example, a 4-bit equality comparator is composed from four
XNOR gates, and each unit detects if the corresponding bits are equal.
Denoting the two 4-bit inputs by A = a3a2a1a0 and B = b3b2b1b0, the
comparator output will indicate equality (logic-1 value) if A = B (a3 = b3, a2 =
b2, a1 = b1, a0 = b0). Figure 2.14 shows a 4-bit equality comparator internal
design, and its block symbol [20].

Figure 2.14 4-bit equality comparator internal design, and its block symbol

Magnitude Comparator- Carry-Ripple Style

An N-bit magnitude comparator is a combinational circuit able to compare two
N-bit binary numbers A and B, and indicates if A > B, A = B, or A < B. In
general, the comparison of two binary numbers starts from checking their MSB
bit (most significant bit, section 2.1) values followed by comparing the
remaining bits down to the LSB (least significant bit) bit pairs.
As long as bit pairs are equal we need to compare the next lower bit pair [20].
The bit pair is different if ai = 1 and bi = 0 (case A > B) or ai = 0 and bi = 1

 54

(case A < B). Figure 2.15 illustrates a 4-bit magnitude comparator with
identical units in each stage and its block symbol, using the notations:
G (is 1 when A > B)
E (is 1 if two numbers are equal) and
L (is 1 when A < B).

Figure 2.15 4-bit magnitude comparator a) internal design; b) block symbol

Problems

2.1 Convert the following binary numbers to decimal, octal and
hexadecimal:
a) 11001100 b) 100000011 c) 11100011

2.2 Perform the following operations in the binary number system
a) 110011.11 + 1101.1 b) 110011.11 - 1101.1
c) 101.1 x 111 d) 100100 : 110

2.3 Perform the following addition and subtraction of signed binary
numbers in the 2’s complement number representation
a) 10001111 + 101101 b) 11101111 – 101000

2.4 Express the following signed decimal numbers as signed 8-bit binary
numbers in sign-magnitude, 1’s-complement, and 2’s complement
representations
a) +33 b) +125 c) -48 d) -113

 55

2.5 Give the coded representation of the decimal numbers 346 and 418 in
8421 BCD code and perform the 346 + 418 operation in BCD code.

2.6 Calculate the odd parity bit of the following strings
a) 1110001 b) 101010 c) 011100 d) 1111100

2.7 Design a 4 x 2 encoder using AND, OR, and NOT gate

2.8 Design a 8 x 3 encoder using AND, OR, and NOT gate

2.9 Design a 4 x 2 priority encoder using AND, OR, and NOT gate

2.10 Design a 3 x 8 decoder with and without enable using AND, OR, and

NOT gates

2.11 Design a 4 x 16 decoder using AND, OR, and NOT gate

2.12 Design a 8 x 1 multiplexer using AND, OR, and NOT gate

2.13 Design a 16 x 1 multiplexer using AND, OR, and NOT

2.14 Design a 4-bit 4 x 1 multiplexer using 4 x 1 multiplexers

2.15 Design a 1 x 4 demultiplexer using AND, OR, and NOT gate

2.16 Design a 1 x 8 demultiplexer using AND, OR, and NOT gate

2.17 Design a BCD to 7-segment code converter

2.18 Design a decimal to Excess-3 code converter

2.19 Design a decimal to 2-out-of-5 code converter

2.20 Design a BCD to Excess-3 code converter

 56

Chapter 3

Logic Circuits and Components

3.1 Digital Electronic Circuits

Logic circuits can be implemented using different digital electronic logic
circuit families, each of which has its own advantages and disadvantages.
Usually a system is built with circuits which belong from a selected single
family, and the logic gates in this family are used to realize all the logical
operations. The combination of various logic circuit families results in a hybrid
approach. In this approach it is very important to take note of the systems
compatibility, and interfacing circuits may be required. The choice of family to
be used depends on availability of different logic functions, switching speed,
power drain, signal voltage level, cost, noise immunity, power dissipation,
circuits’ density, flexibility, and other characteristics. In many cases the main
goal is to design a circuit for the highest speed possible in order to minimize
calculation time.
Digital systems are built up from digital circuits. Digital logic circuits are
implemented using transistors and interconnections in complex semiconductor
devices called integrated circuits (IC). An IC is a silicon semiconductor crystal
(chip) that contains a network of transistors. The number of transistors
determines the integration level [16]:
- Small-scale Integration (SSI); several transistors (< 40) per chip
- Medium-scale Integration (MSI); between 40 - 400 transistors per chip
Perform basic digital functions, e.g., 4-bit addition, multiplication, etc.
- Large-scale Integration (LSI); between 400 and a few thousands of
transistors per chip. Implement digital systems, e.g. small (micro-) processors
and memories. For example, Intel i4004 has ca. 2300 transistors.
- Very Large-scale Integration (VLSI); Several thousands to over 1 billion
transistors per chip, implements complex digital systems, e.g., complex
microprocessors, multi-processor systems on-chip, etc. For example, Intel i7-
4770k has ca. 1.5 billion transistors.

 57

In the next we will give an overview of the most popular logic families,
transistor-transistor logic (TTL) and complementary-MOS (CMOS). The
CMOS logic family is the slowest of the three logic families but also dissipates
significantly less power then the medium-speed family, TTL, or the high-speed
family ECL [22]. Nowadays, High-Speed CMOS and Advanced CMOS Logic
(AHC and AHCT) products, with low-power consumption [23] are also used.

Transistor-Transistor Logic (TTL)

Transistor-Transistor Logic (TTL) is a very prominent logic family. Its name
refers to the use of bipolar transistors throughout the circuit.

Inverter (NOT Gate)

The inverter is available in each of the logic families. A possible
implementation is shown in Figure 3.1, where the bipolar transistor, connected
in the common-emitter configuration serves as an inverter.

Figure 3.1 The transistor inverter and the input-output characteristics

The inverter specifications typically include the voltage levels [24]:
V IH: minimum gate input voltage which will reliably by recognized as logic 1
V IL: maximum gate input voltage which will reliably by recognized as logic 0
VOH: minimum voltage at gate output when output is at logic 1 (HIGH)
VOL: maximum voltage at gate output when output is at logic 0 (LOW)

 58

TTL NAND gate

A possible design for a TTL NAND gate is shown in Figure 3.2 [24]. The logic
values 0 and 1 are represented by the nominal voltage 0 V and + 5 V. The
multi-emitter transistor input numbers can be increased.

Figure 3.2 TTL NAND gate with resistor pull-up

CMOS Logic

The basic CMOS gates are considerably slower than the TTL gates but because
of the simplicity of their geometry and very small physical size, they can be
packed densely on a silicon chip [22].

Basic CMOS Gates

CMOS technology implements physically digital logic circuits using NAND,
NOR, and NOT gates [22]. The CMOS inverter built up from an
interconnection of pMOS and nMOS transistors may be considered as a basic
switch circuit. Figure 3.3 presents the general structure of a CMOS circuit
where the pMOS transistors have to be connected to +Vcc and the nMOS
transistors to GND.
The circuit of the two-input NOR and NAND gates is also shown. For example,
the NAND gate consists of two series-connected n-channel driver transistors
and two parallel-connected p-channel load transistors.

 59

In manufacturer’s specifications the basic technology parameters
characterizing digital logic gates are listed [22]:
- Fan-in: indicating the number of gate inputs (usually up to 4 or 5).

Figure 3.3 CMOS general structure and basic CMOS gates

- Fan-out: indicating the number of standard loads a gate’s output can drive
without reducing gate performance.
- Size: area on the silicon crystal occupied by the layout cell for the circuit
corresponding to the gate. The area is proportional to the size of a transistor.
- Noise margin: absolute worst-case condition, constitutes the guaranteed
margins against signal undershoot and power of thermal disturbances
- Power dissipation: power consumed by the gate (dissipated as heat)
- Logic voltage levels: important because the TTL and CMOS families input
and output levels differ
- Propagation delay: time required for an input digital signal to be noticed at an
output line.
]
Comparison of Logic Families

Transistor-transistor logic (TTL) based on bipolar transistors is one of the
most widely used families for small- and medium-scale devices, and rarely
used for VLSI. This family typically operates from 5V supply and has very
good noise immunity. It is quite fast, especially in the Schottky version.

 60

Emitter-coupled logic (ECL) based on bipolar transistors, removes storage
time problems by keeping the transistors from saturation. ECL is by far, the
fastest logic, but with low noise immunity.
Complementary metal oxide semiconductor (CMOS) is the most widely
used family for large-scale devices. It combines high speed with low power
consumption. Usually operates from a single supply of 5 - 15 V, has excellent
noise immunity and can be connected to a large number of gates [25].

3.2 Sequential Logic Networks

In many applications the use of combinational circuits is not sufficient. Logic
networks whose outputs depend not only on the actual input signal
combination, but on the actual state of the network established previously is
called sequential logic network. The network input variables are called
primary variables, and the output variables which are fed back; secondary
variables. The sequential circuits, in contrast to the combinational ones,
have ”memory”. A sequential logic network, as a black box, is shown in Figure
3.4.

Figure 3.4 Sequential logic network

Sequential circuits can be classified into two groups: 1. Asynchronous
sequential circuits (no clock signal), 2. Synchronous sequential circuits
(operating with synchronizing/clock signal).
In the asynchronous sequential circuits the inherent time delay in the
feedback loop will ensure the „memory” property necessary to generate the
secondary variables. In this case the logic state transitions occur at different
times, i.e. asynchronously.
In synchronous sequential circuits the operations are synchronized. This is
the function of clock, which provides a series of pulses with precise pulse
width and repetition rate. A synchronous sequential circuit, a clocked system,
uses a clock to decide when to update the state of the circuit. Most sequential
circuits are edge triggered: they change their state on either the rising or falling
edge of the pulse. A transition from one state to the other occurs only at fixed

 61

time intervals dictated by the clock pulse, giving synchronous operation. An
idealized clock waveform is shown is Figure 3.5.

Figure 3.5 Clock waveform

One-bit storage element is able to hold a single bit, 0 or 1, to read the saved bit
and to change its value. In sequential circuits the storage elements are: flip-
flops and latches.
The flip-flop , as the basic memory element in sequential circuits, is itself a
sequential circuit having two states. The one-bit storage device has several
inputs (X), an output (Q), and a specific trigger input (clock - CLK). The
output value depends on the response of a pulse at the trigger input CLK (on
the rising or falling edge of the pulse). When a pulse is absent at input CLK the
output remains unchanged (storage mode). The flip-flop two states correspond
to logic-0 or logic-1 stored in the flip-flop. The flip-flop is set when the output
has logic-1 value, and the flip-flop is reset when the output has logic-0 value.
A latch is a one-bit storage device with several inputs (X) and an output (Q).
The output value is a function of the inputs Q = f (X) only when specific
combinations occur at the inputs X; otherwise the output remains unchanged
(storage mode). A latch can change state if there is an active level on the CLK
input. Their content changes immediately when their inputs change.
Nowadays, most of the circuits are synchronous sequential circuits because the
applications need predictable simple design and analysis. An asynchronous
circuit is preferred over a synchronous circuit when high speed of operation is
required. Asynchronous sequential circuits respond immediately whenever
there is change in any input variable without having to wait for a clock pulse.
The asynchronous sequential circuits cost less in terms of the number of gates
than the synchronous circuits, and therefore, for economical reasons, they
could find useful applications [16].
In the next we will give an overview of the most important flip-flop and latch
types, and their implementation in the various logic families. The behaviour of

 62

a particular flip-flop type will be described by truth/characteristic table and
characteristic equation, which gives the next output in terms of the input
control signals and the current output.

3.3 Flip-Flops

The SR Latch and Flip-Flop

The SR type is one of the simplest storage elements (bistable multivibrator)
with two inputs S and R, which force the unit to become set and reset, and two

outputs Q and Q. The value of the next state Q (t + 1) depends on the values of
the two present inputs S (set) and R (reset), and furthermore from the value of
the present state Q (t). Figure 3.6 shows the symbols of SR latch and flip-flop
used in logic circuits. The black boxes clocked symbols clearly distinguish the
above mentioned two types, indicating that the latch is level-triggered (a, b)
and the flip-flop is edge-triggered (c, d). Without the small triangle, the circuit
is a latch. As in the case of logic gates, a bubble indicates the negation of a
logic value. For latches a bubble in the clock line indicates that the clocked unit
is enabled when the clock line is at logic-0, instead of logic-1.
A flip-flop can change state only during a transition of the trigger input Clk.
For example a rising-edge triggered flip-flop can change its state only during 0-
to-1 transition on clock pulse [26].

Figure 3.6 Symbols for SR latches and flip-flops

Figure 3.6 a) shows the standard symbol for logic-1 active level SR latch (latch
can change state if Clk = logic-1). The standard symbol for logic-0 active level
SR latch is illustrated in Figure 3.6 b). The symbol used for rising-edge
triggered SR flip-flop (flip-flop can change state only during 0-to-1 transition
on Clk) is shown in Figure 3.6 c). Finally, Figure 3.6 d) illustrates a falling-
edge triggered SR flip-flop (flip-flop can change state only during 1-to-0

 63

transition on Clk). The SR latch function and characteristic table, a relationship
which exists between the inputs, outputs, present states and next states is
described by Table 3.1. If the clock line is set to logic-1, the state of the SR
latch becomes logic-0 when logic-0 is placed on R but not S, and the state of
the SR latch becomes logic-1 when logic-1 is placed on S but not R. No change
in state occurs when S = R = 0, and the SR latch behaviour is not defined for
the S = R = 1 values.

Table 3.1 Behaviour of an SR latch

In the SR flip-flop function table instead of Clk = 1 appears the rising clock
edge (↑), and Clk = 0 is substituted by the falling clock edge (↓). The
characteristic table is the same. The SR latch and flip-flop characteristic
equation is derived from the characteristic table. Their expression is obtained
by using a three variable Karnaugh-map (notations correspond to Figure 1.6 c)
for the inputs S(t), R(t) and Q(t), see Figure 3.7.

Figure 3.7 S(t), R(t) and Q(t), variable Karnaugh-map

 64

From the above Karnaugh-map we can deduce the characteristic equation of a

SR latch or flip-flop: Q(t+1) = S(t) + R(t) Q(t)
The so called excitation table is similar to the truth table, showing the input
variable states that are necessary to generate a particular next state when the
current state is known. SR latch and flip-flop has the same excitation table, see
Table 3.2.

Table 3.2 SR latch and flip-flop excitation table

The SR latch and flip-flop can also be represented graphically by a state
diagram, derived from the excitation table. In the state diagram a state is
represented by a circle, and the transition between them is indicated by arrows,
representing the path between different circles. SR latch and flip-flop has the
same state diagram, see Figure 3.8.

Figure 3.8 SR latch and flip-flop state diagram

Starting from the characteristic equation Q(t+1) = S(t) + R(t) Q(t), from a
simple AND-OR gate implementation, making the transformations according to
DeMorgan’s law and rearranging/redrawing the circuit (see Figures 3.9 a and
b), we deduce the corresponding two level NAND structure (see Figure 3.9 c).

 65

This is the so called S R latch design. By using NOR gates instead of NANDs
we get the S R latch structure (Figure 3.9 d).

 a)

 b)

c) d)

Figure 3.9 S R and S R latch design using logic gates

In this approach SR latch is a simple asynchronous sequential circuit, built up
from gates with feedback loops. This type can be use as a basic unit in every
synchronous and asynchronous sequential circuit.

 66

Clocked Latch and Flip-Flop

The latches and flip-flops often used for implementing synchronous sequential
circuits have a clock input. A clocked SR latch or flip-flop can be performed
from a simple structure NAND (Figure 3.8 c) by adding two more NAND gates

as shown in Figure 3.10. The additional gates generate the S and R signals,
based on inputs S and R and Clk. In case of SR latch the Clk input works as a
control input which acts just like an enable.

Figure 3.10 Clocked SR Latch

The latch is level triggered and is called “transparent” because any change on
the inputs is seen at the outputs immediately. This property causes
synchronization problems and this unit is not recommended for use in
synchronous design. In the applications various flip-flops are used which are
created using latches. The flip-flop output respond to the inputs on specific
times, the rising or falling edge of a clock signal.

JK, D and T Flip-Flops

In this section we will study the JK (Jack Kilby), D (data) and T (toggle) flip-
flops (omitting the JK and T latches), emphasizing the popular D flip-flop
design using latches. In general, the latches and flip-flops have the same
characteristic table, characteristic equation, excitation table, and state diagram.
The rising-edge triggered flip-flops standard symbols are presented in Figure
3.11. The JK flip-flop is a generalized form of the SR flip-flop. The J input has
the set function, and the K the reset one. When J = K = 1 at the Q output
appears the complemented value of the present state.
The D flip-flop has the simplest relationship between its next state and the
input line. Its function is to copy the data on the D input to the Q output line at
the next clock pulse. The signal is delayed by exactly one clock period.

 67

Figure 3.11 Standard symbols for JK, D and T flip-flops

If T flip-flop input line has logic-1 value, the value of the next state becomes
the complement of the previous state; otherwise its state remains unchanged.
Table 3.3 summarizes the above mentioned three flip-flops truth/characteristic
tables.

Table 3.3 JK, D and T flip-flops truth table

The various flip-flops characteristic equation can be derived from the
corresponding three and two-variable Karnaugh maps (notations correspond to
Figure 1.6 c) shown in Figure 3.12.. The map cells follow the flip-flop truth
tables.

Figure 3.12 JK, D and T flip-flops Karnaugh maps

 68

The JK, D and T flip-flops characteristic equations are:

JK

D

T

Q (t+1) = J(t) Q(t) + K(t) Q(t)

Q (t+1) = D(t)

Q (t+1) = T(t) Q(t)⊕

From the JK, D and T flip-flops truth table we can deduce their excitation
tables and state diagrams, as shown in Figure 3.13.

Figure 3.13 JK, D and T flip-flops excitation table and state diagram

 69

Asynchronous Set/Reset Flip-Flops

In many applications there is a need for asynchronously SR, JK, D or T flip-
flops. These units have two additional inputs as:
- asynchronous set (S) is called direct set or Preset
- asynchronous reset (R) is called direct reset or Clear
The clock pulse controls all inputs excepting S and R, which have logic-0
active level. The standard graphics symbols are shown in Figure 3.14.

Figure 3.14 Examples of standard graphics symbols

The characteristic table, characteristic equation, excitation table, and state
diagram are the same as for the normal flip-flops.

SR Flip-Flop Design using Latches, Master-Slave Flip-Flop

In many applications it is necessary to observe the flip-flop state while in
parallel a new state is entered. In this case the new flip-flop state may be
logically dependent on itself. To avoid the possibility of an oscillation which
could be caused by the flip-flop continuously state-changing during the period
in which the clock is equal to logic-1, it is useful to introduce an intermediate
network. As an example, consider an SR flip-flop using latches as shown in
Figure 3.15. The new structure, called Master-Slave is composed of two main
units, called master, which is an SR latch, and slave, another SR latch. Because
of the particular interconnection the SR flip-flop’s clock input enables either
the first or the second SR latch, but not both. For example when Clk = 0, the
master SR latch is enabled. The structure presented above is a rising edge-
triggered flip-flop. The output Q depends on the flip-flop input value that was
present right at the rising edge of the clock signal. Like SR latches, SR flip-
flops are useful in control applications.

 70

Figure 3.15 An SR master-slave flip-flop

3.4 Registers and Counters

One of the most important sequential circuit used in digital system is the
register. Its main role is to store and/or shift the input data (bits). A register is
built up from flip-flops connected in cascade.
This unit allows serial and/or parallel shift into or out of the register, and right
or left data movement. An N-bit register requires N flip-flops. The registers are
typically built up from D flip-flops. Figure 3.16 shows a basic 4-bit serial-in,
parallel-out, right shift register logic diagram and its waveforms. In order to
illustrate its operation we consider the data word 1011 as the input (waveform
is illustrated in Figure 3.16 b) [22]. The register is initially cleared, at t = 0
Q0 - Q3 outputs are all 0. At t = 1, on the positive edge of the clock pulse
(CP1) the first bit appears at the output Q0. At the second clock pulse, the bit at
Q0 is transferred to Q1 while the next data bit appears at Q0, based on D flip-
flop truth table (see subsection 3.3). Next clock pulse causes the bit at Q1 to
appear at Q2, the bit at Q0 to appear at Q1 and so on.

 71

Figure 3.16 4-bit shift register a) logic diagram; b) waveforms

Counters

An N-bit counter is an extended N-bit register able to increment or decrement
its own value on each clock cycle (when the count is enabled) [20]. A counter
that can increment (means to add 1) is called up-counter. The down-counter
can decrement (means to subtract 1). The up/down counter can increment and
decrement. The counters having a repeated state sequence are called modulus
counters. The modulus refers to the number of different states that make up the
counting sequence. For example, a binary coded decimal counter is used to
count from 0 to 9 (10 different states) is a mod-10 counter. A counter with N
flip-flops has a maximum of 2N states (maximum modulus is 2N). The counters
are typically built up from JK, T or D flip-flops.
Counters are classified into two categories [27]:
• Asynchronous Counters (Ripple counters)
• Synchronous Counters

 72

Asynchronous Counters
The Ripple Counter

A three-stage (modulo - 23) up-counter using JK flip-flops is shown in Figure
3.17. The flip-flops are connected to toggle, and change state during 1-to-0
transition on clock. The input signal, whose pulses are to be counted, is applied
to the clock input of the first flip-flop, and the output of each flip-flop is
connected directly to the clock input of the next. The flip-flop clear inputs are
connected together, before counting starts; a pulse can clear all the flip-flops.
During counting a delay is caused by the rippling , which results in a limitation
of the maximum frequency of the input signal. The ripple counters could be
down-counters as well.

Figure 3.17 Mod-8 ripple counter

Divide-by-N Counter

A mod-N counter may also be described as a divide-by-N counter [27]. The
circuit shown in Figure 3.18 acts as frequency divider. In general, in an N flip-
flop circuit, the input frequency is divided by 2N in steps of 2. The negated
output of the first flip-flop is directly connected to the clock input of the second
one, which is the most significant flip-flop. The Q0, Q1 output values depend
on the response of a pulse at the trigger input clock (on the rising edge of the
pulse). The FF0 output frequency is equal to a half of the main clock frequency,
and the FF1 output’s is quarter of it. Thus, this is an example of a divide-by-4
counter.

Figure 3.18 Divide-by-4 counter

 73

Synchronous Counters
Ring Counter

In synchronous counters, the clock input is connected to all of the flip-flops so
that they are clocked simultaneously. A 4-bit ring counter using D flip-flops
shown in Figure 3.19 is very similar to the 4-bit shift register (Figure 3.16).
The ring counter Q3 output is fed back to D0 input. If Q0 = 1 while Q1 = Q2
= Q3 = 0, each clock pulse shifts the 1, first to Q1, then to Q2, Q3, and finally
back to Q0, as a ring. Since the ring counter is composed from four flip-flops,
and has four distinct states, is called a modulo-4 counter. Each flip-flop output
frequency is equal to a quarter (1/4) of the main clock frequency.

Figure 3.19 Ring counter

A ring counter has many applications, as: frequency divider, code generator,
counter, period and sequence generator etc. [28].

Johnson Counter

The Johnson counter is very similar to the 4-bit ring counter shown in Figure

3.19, having in the feed back loop an inverter, or the inverted output Q3 (Q3)
of the last flip-flop is connected to the input of the first flip-flop. An N-stage
Johnson counter has 2N different states, and it is considered as a modulo-2N
counter. The Johnson counter is economical, it can be implemented with only
half the number of flip-flops.

 74

Case Study 1: Synchronous Modulo-3 Counter

A modulo-3 counter [22] has only three different states, and to cover them we
need only two flip-flops (generating 22 different states). Table 3.4 lists the
counter states (the 1 1 state is omitted), the two JK flip-flop circuit and its
waveforms is shown in Figure 3.20.

Table 3.4 State table

The flip-flops are initially reset (Q1Q0 = 00) [22]. Then Q1 = 1 and J0K0 = 11,
FF0 is set by the first clock pulse. Now Q1Q0 = 01.
Since J0K0 = 11, the next clock pulse will reset FF0, making Q0 = 0 once
more. Since Q0 = 1 before the second clock pulse arrived, FF1 is set by the
second pulse and Q1 becomes 1.
With Q1Q0 = 10, J0 = 0 while K0 = 1. After the third clock pulse, Q1Q0 = 00,
which was the initial state.
In general, the design of a synchronous counter (sequential logic circuit)
requires the design of a combinational logic circuit and a memory unit,
composed from flip-flops.
The counter design starts with develop of the state diagram and the next-state
table for a specific counter sequence. Based on the flip-flop transition
(excitation) table the Karnaugh-maps are used to derive the logic expressions
for flip-flop inputs. Finally, the counter implementation is given [29].

 75

Figure 3.20 Mod-3 counter a) circuit; b) waveform

Case Study 2: Design the 3-bit Gray code counter using JK flip-flops

The Gray code is a binary representation for positive integers having a
sequence with a special property (see Table 2.4). In the next the design of the
3-bit Gray code counter is presented. Figure 3.21 shows its state diagram and
next state table.

Based on JK flip-flop excitation table (see Figure 3.12 a) Figure 3.22 shows the
Karnaugh maps for present-state J and K inputs and the logic expressions for
the flip-flop inputs [29].

 76

Figure 3.21 State diagram and next state table for a 3-bit Gray code counter

Figure 3.22 Karnaugh maps and the next-state J and K outputs expressions

 77

Finally, Figure 3.23 shows the 3-bit Gray code counter implementation.
Digital counters are very useful in many applications. They can be easily found
in digital clocks and parallel-to-serial data conversion (multiplexing) [30].
The asynchronous counters logic circuit is very simple, while the design of a
synchronous counter involves complex logic circuit. The asynchronous has low
speed in comparison with the synchronous design, where all flip-flops are
clocked simultaneously.

Figure 3.23 The hardware diagram of the 3-bit Gray code counter

 78

Problems

3.1 Draw the schematic of a four-input CMOS NOR and NAND gate

3.2 Draw the schematic of the logic functionF = A + B (F + G) from
CMOS gates

3.3 In the next circuit the sketch Q1 and Q2 (time delay negligible)

waveforms

3.4 Using four D flip-flops, design a 4-bit register which can be used for

parallel-in parallel-out data transfer. Show the four input and four
output waveforms when the data word 1110 is transferred

3.5 How many flip-flops are required to count to
a) 8 b) 28 c) 67 d) 124?

3.6 What is the maximum modulus for a counter which contains
a) 3 b) 6 c) 8 d) 10 flip-flops?

3.7 Design a four stage counter that has six states: 0000; 0110; 0111; 1100;

0001 and 1101

 79

Chapter 4

Semiconductor Memories and Their Properties

All sequential circuits have a memory property which is due to the use of basic
memory units, such as flip-flops. In this chapter we will overview the main
memory types, how they are built, their main features, and how they work.
From the memory data-holding point of view the memories are classified in
two main groups: as volatile and nonvolatile types. Volatile memory is also
called RAM (random access memory), while nonvolatile is called ROM (read
only memory). The RAM can be written to and read from, and the ROM can
only be read from. We speak about a M x N memory capacity if the memory
component is able to store M data items of N bit each. A word represents each
data item in a memory. Words can be read one by one and written using
address inputs.

4.1 Volatile Memories

In this subsection we will discuss RAM memory in general presenting the
SRAM, DRAM, and CAM memory types. The volatile memories criterion is
that they store their information as long as the power supply is on. A RAM is a
kind of memory whose contents can be easily modified. Writing (storing) data
into a RAM chip is as fast as reading data. Figure 3.1 shows a block diagram
for a 1024 x 32 RAM (M = 1024, N = 32). Data is a 32-bit wide set of data
lines used as input lines during writes or as output during reads. ADRS is a
10·bit (210 = 1024) input serves as address line during reads or writes. RW is a
control input which value is 0 for read operation and RW = l for write. EN is a
1·bit control input that enables the RAM for reading or writing [20].
Figure 4.2 shows the logical internal structure of an M x N RAM which is an
array of bit storage blocks, known as cells. A collection of N cells forms a
word, and there are M words. The address inputs arrive into a decoder selecting
all the cells in one word corresponding to the present address values. The EN
and RW inputs role are the same as above. The data lines are connected
through one word’s cell to the next word’s cell.

 80

Figure 4.1 1024 x 32 RAM black box

Figure 4.2 Logical internal structure of a RAM

Static Random Access Memory (SRAM)

SRAM is one of the most known temporary memory types. A static RAM
could be modeled as two inverters connected in a loop as is shown in Figure
4.3 [20].
A D bit storing procedure is simple; the bit will go through the bottom inverter
resulting in a D value, then back through the top inverter to become D again.
To write a logic-1 in a RAM cell it is required to set DATA line to 1, and

DATA 0= value. To read fast a stored bit it is recommended to set both

 81

DATA and DATA lines to logic-1 (so called precharging), and then by having
ENABLE to logic-1. Each memory has a specific timing diagram that specifies
the correct time sequence of the events.
The Figure 4.3 shows a common SRAM cell implementation, the so-called 6
transistor cell. The structure consists of two cross-coupled CMOS inverters
plus two access nMOS transistors responsible for connecting the inverters to
the input/output bit lines when the corresponding word line is asserted.

Figure 4.3 SRAM cell

Dynamic Random Access Memory (DRAM)

The inexpensive and reasonably high-speed DRAM memory is a single
transistor memory cell array. A DRAM cell consist of one transistor, which is
used as a switch to allow a charge to be moved into or out of the second
component, a capacitor, as is shown in Figure 4.4 .
To write data into a DRAM cell the enable input value has to be logic-1. The
data line values (logic-1 or 0) occur the charging or putting on to ground level
the top plate of the capacitor. When ENABLE is returned to 0, the transistor is
turned off; the charge is trapped in the capacitor and ideally cannot change
until the enable will be 1 again. It is very important to select a relatively large
capacitor, to lengthen its discharging time.

Figure 4.4 DRAM cell

 82

To read a stored bit the DATA line voltage must be set to the midway between
0 and Vcc, and the ENABLE = 1.
The value stored in the capacitor will modify the data line voltage level. A
special circuit is able to detect the changing and amplifies it to logic-1 or 0.
Since the reading discharges the capacitor, the RAM must immediately write
the bit read back to the bit storage cell. This operation is performed
automatically by a memory controller. A built-in memory controller is vital to
perform a refreshing step in every few microseconds. The RAM must be
refreshed periodically (e.g. 64 ms refresh interval) because information is
stored onto capacitors which can lose their charge. DRAM is slower than the
SRAM because every read must be followed by an automatic write.
In a DRAM memory chip, the cells are arranged in rows and columns, as
shown in Figure 4.5. In this particular case, the array size is 256 rows by 256
columns of 4-bit words. The row and column addresses (a total of 16 bits) are
multiplexed. The memory array is controlled by the signals (1)–(6) generated

by the timing and control unit after processing OE (output enable), WE (write

enable), RAS (row address strobe), and CAS (column address strobe). As in
the SRAM chip, data are obviously maintained while in standby mode [31].

Figure 4.5 Simplified view of a conventional DRAM chip

 83

Content-Addressable Memory (CAM) for Cache Memories

While in the cases of the above memory types during the reading operation an
address is selected, to which the memory responds with the value stored in that
address, in a CAM instead of an address, a content is presented. In this
approach the memory responds with a hit if such content is stored in the
memory. This type of memory, also called associative memory, is used in
applications where performing a “match” operation is necessary.

4.2 Nonvolatile Memories

In this subsection we will discuss ROM memory in general presenting the
PROM, EPROM, and EEPROM memory types.
The read-only memory, or ROM, is a special kind of memory which does not
lose its contents when power is shut off. A ROM reads faster and consumes
less power than a RAM [20]. The ROMs are applied in such of systems where
it is important to store programs that should not be modified. Examples:
arithmetic circuits might use tables to speed up computations of logarithms or
divisions or in many computers the BIOS system, etc. Figure 4.6 shows the
black box of a 1024 x 32 ROM. The ROMs internal structure is very similar to
RAM architecture (see Figure 4.2). Since this memory can be read from but not
written to, the WR and WDATA inputs are not needed. The ROM does not
have a clock input because no synchronous writes occur in a ROM. From this
reason a ROM is like a combinational circuit where the inputs are the address
lines, and it produces some data as the output.

Figure 4.6 1024 x 32 ROM black box

In the next two popular methods are described to understand how bit storage is
implemented.

 84

Mask-Programmed ROM

Figure 4.7 illustrates mask-programmed ROM cells which are programmed
during fabrication. The left cell is programmed with 1 by directly wiring logic-
1. The right cell is programmed with 0. Mask-programmed ROM has the best
compactness of any ROM type.

Figure 4.7 Mask programmed ROM cells

Fuse-Based Programmable ROM - PROM

This ROM type has fuses in each bit storage cell as is shown in Figure 4.8. In
the initial phase, the ROM is manufactured with intact fuses; all stored contents
are logic-1.

Figure 4.8 Fuse-based ROM cells

If the fuse is intact, like a wire, the cell logic-1 contents is enabled which
appears on the data line. A special device, a programmer is able to set the
ROM contents. By passing a higher than normal current through the fuse, the
connection is eliminated, the fuse is blown, and a logic-0 is occurred. The
ROM which can be programmed (written) only once is called one time
programmable ROM or PROM.

 85

Erasable PROM - EPROM

Most of the commercial reprogrammable ROMs are based on floating-gate
transistors. Figure 4.9 depicts a logical view of an erasable PROM cell. Each
cell consists of a special type of transistor with a particular gate in which the
electrons are captured. At the beginning an EPROM cell stores a logic-1 value,
see Figure 4.9 left cell. When a programmer device applies higher than normal
voltage to those transistors in cells that should store 0s, in the floating gate
transistors appear the trapped electrons, see Figure 4.9 right cell.

Figure 4.9 EPROM cells

Exposing an EPROM chip to ultraviolet (UV) light of a particular wavelength
causes all the stored 0s (charges) to disappear (erase) after which the memory
can be programmed again. This kind of chip can typically be erased and
reprogrammed about ten thousand times or more and can retain its contents
without power for ten years or more [20]. Usually, an EPROM chip has a
window in the package through which UV light can pass.

EEPROM and Flash Memory

EEPROM solves the erasure problem of EPROM with a slight modification in
the floating-gate transistor. To program an electrically erasable PROM
(EEPROM), a high voltage has to be applied in order to trap the electrons in the
floating gate transistor, and another high voltage must be used to free the
electrons. Figure 4.10 shows a black box of an EEPROM.
The data lines are bidirectional. Because EEPROMs use voltages for erasing,
instead of UV light, it is possible to erase and reprogram certain words without
changing the contents of other words. If EN = 1, while WRITE = 1 indicates
that the data on the data lines should be programmed into the word at the

 86

address specified by the address line. The BUSY input is responsible to show
that programming is not complete.

Figure 4.10 1024 x 32 EEPROM black box

Modern EEPROMs can be programmed tens of thousands to millions of times,
and can retain their contents for tens to one hundred years or more without
power [20].

Flash memory (also called Flash EEPROM) is a combination of EPROM
(requires only one transistor per cell) with EEPROM (electrically erasable and
electrically programmable). A flash memory can erase very quickly a memory
block, sector or the whole memory.
The next generation memories should be nonvolatile, with very high density,
fast read and fast write cycles, low power consumption, and low cost.

4.3 Memory Expansion

In many applications there is a need to expand the system memory capacity. In
the next examples we will present two approaches which use small RAMs as
building blocks for making larger memories [32].

Example 1 Expand the address line

The task is to build a 256K x 8 RAM from 64K x 8 RAMs. A 64K x 8 RAM
has (6 10 162 2 2⋅ =) 16 address lines, and 8 data lines. In order to expand the
address to 256K (8 10 182 2 2⋅ =) we have to introduce two extra address lines,
because we have twice as many words to address. We will need four (22) 64K
x 8 RAMs. The 256K x 8 memory design with the corresponding address

 87

ranges is shown in Figure 4.11. The two most significant address lines go to the
decoder, which selects one of the four 64K x 8 RAM chips. The other 16
address lines are shared by the 64K x 8 chips. The 64K x 8 chips also share
WR and DATA inputs.

Figure 4.11 256K x 8 memory from 64K x 8 chips and address ranges

Example2 Expand the data line

For example, suppose we have available a large number of 64K x 8 of RAMs,
but we need a 64K x 16 RAM. We have to use two 64K x 8 of RAMs to obtain
16 bits per word. We connect the 16 address inputs and the enable input to the
two ROMs, as is shown in Figure 4.12. We group the two 8-bit outputs into our
desired 16-bit output. Thus, each ROM stores one byte of the 16-bit word.
The left chip contains the most significant 8 bits of the data. The right chip
contains the lower 8 bits of the data.

 88

Figure 4.12 64K x 16 RAM, created from two 64K x 8 chips

Example 3 Expand the address and data line

The task is to build a 4096 x 32 RAM from 1024 x 8 RAMs. In this case it is
necessary to create more and wider words. In the first step we generate a 4096
x 8 RAM by using 4 RAMs. The top two address lines are connected to a 2x4
decoder to select the appropriate RAM. Finally, we widen the RAM by adding
3 more RAMs to each row.

Problems

4.1 Draw a logic structure of a 1K x 8 RAM built up from 1K x 1 RAMs

4.2 Draw a logic structure of a 32 x 4 RAM built up from 16 x 4 RAMs

4.3 Draw a logic structure of a 32 x 8 ROM built up from 16 x 4 ROMs,
giving the corresponding address ranges

4.4 Summarize the main differences between the DRAM and SRAM
memories

4.5 Summarize the main differences between the EPROM and EEPROM
memories

 89

Chapter 5

Microprocessors Basics

In general, a microcomputer or microprocessor system is a set of components
built up from microprocessor, memory elements and input/output units. The so
called single purpose processors [20] are able to perform a single processing
task. They are fast and have power efficient computation. In the second main
group belong the popular and more widely known general purpose processors,
the programmable processors. They are mass-produced and used in many
applications. This chapter presents a microcomputer organization, and
introduces a typical, simple microprocessor, illustrating its few instructions.

5.1 Basic Microcomputer Organization

The microcomputer main units are: the input unit , the memory unit, the
arithmetic unit , the control unit , and the output unit [24]. The basic
microcomputer organization is shown in Figure 5.1.

Figure 5.1 Basic microcomputer organization

The program and data are first stored in the memory unit via the input unit. The
control unit interprets and executes the introduced instructions. The arithmetic

 90

unit contains the necessary data for execution, and here occurs most of the data
handling. Finally, the output unit delivers the results to output. The arithmetic
unit and control unit constitutes the central processing unit (CPU), which is
the microprocessor in a microcomputer system [24].

The Memory Unit

The memory unit consists of substorage elements, called registers [34]. They
are able to hold one computer word. The memory place where the substorage
elements are present is known as a location. Each location has a unique
address (integer number). The computer data and programs are stored in the
memory forms like: ROM and RAM (see Chapter 4).
Beside the memory unit, the registers are able to store the information, as
groups of digits. The group of binary digits handled together is called word.
Modern processors, including embedded systems, usually have a word size of 8,
16, 24, 32 or 64 bits, while modern general purpose computers usually use 32
or 64 bits [33].

The Input/Output Units

Via the Input/Output units the computer communicates with the outside world.
These devices are called peripherals.

The ALU and control unit properties and roles will be discussed in the next
subsection.
In many applications, in order to achieve a faster computational speed, a direct
memory access (DMA) is allowed, when the I/O units could access memory
directly, not through the arithmetic unit. Figure 5.1 shows a direct link between
the I/O units and the arithmetic unit.

 91

5.2 General Purpose Microprocessor

As is shown in Figure 5.2 a programmable processor consists of two main
parts: a datapath and a control unit.

Figure 5.2 Basic architecture of a general purpose processor

Basic Datapath

Programmable processor datapath (see Figure 5.2) main units are: data memory,
register file and ALU [20]. The data memory D manipulates all the accessible
data (input, output data). The load operation reads data from data memory and
loads them into one of the register files. ALU operation (typical includes
addition, subtraction, AND, OR, shift operations etc., while the data is being
transferred) transforms register data and the result is send back into any
register of the register file. Store operation writes data from any register in the
register file to any data memory location. Each operation can be executed in
one clock cycle. In ALU the data are incorporated in the accumulator and
scratchpad registers. The flag bit is also included in the arithmetic unit. Its

 92

value provides information regarding to the course of computation. The set of
flag bits is kept in a special register, the program status word (PSW).

Basic Control Unit

A program is a sequence of instructions (able to handle data), written to
perform a specified task. The program is stored in the processor instruction
memory I (see Figure 5.2). The control unit requires a controller, which
executes the instructions [20].
The control unit controls and supervises the computer operations. Its role is to
receive the instructions, to decode them, and to generate the necessary signals
for execution. Within the control unit takes place a program counter (PC),
which indicates the instructions location. A program counter keeps the address
of the instruction to be executed [36]. It is incremented after each instruction
byte (the instruction locations are usually in sequence).
The information transmission between the microprocessor and memory and I/O
devices is done via the address (unidirectional), data (bidirectional), and
control buses. The control bus lines could be uni- or bidirectional. Over this
set of lines the signals manage timing and status information [20].
The instruction register (IR) stores the control unit instructions, maintains the
acceptation of the first byte of every instruction via the data bus from memory.
The control unit’s role is to provide the synchronization between various units.
Several clock periods are needed for example, to fetch the instruction from
memory, to decode it (determine the operation and operands of the instruction),
and finally to execute it (carry out the instruction’s operations using the
datapath) [35, 39].
Each of these time intervals, including one or more clock periods, is called a
machine cycle [24]. The whole time period which involves the fetching,
decoding and executing of an instruction is called an instruction cycle.
Each particular microprocessor has its own instruction format.

5.3 Instruction Sets

An instruction is a collection of bits that instructs the processor to perform a
specific operation. The collection of all instructions for a processor is called
instruction set. The user specifies the operations to be performed by the
processor and their sequence by the use of a program, which is a list of
instructions. A thorough description of the instruction set for a processor is

 93

called instruction set architecture (ISA) [37]. The microprocessor instructions
set depends on the microprocessor type.
In the next we consider a processor which uses 16-bit instructions and the
instruction memory is 16-bits wide [20]. We define a simple three instruction
set where the most significant 4 bits refers to the operation, and the next 12 bits
include register file and data memory addresses.

Load instruction – 0000 r3r2r1r0 d7d6d5d4d3d2d1d0
This instruction moves the data (leaves the memory location invariably) from
data memory (whose address is given by d7d6d5d4d3d2d1d0) into the register
file (whose address is indicated by r3r2r1r0).

Store instruction – 0001 r3r2r1r0 d7d6d5d4d3d2d1d0
This instruction moves the data from the register file to data memory (without
changing the register contents).

Add instruction – 0010 ra3ra2ra1ra0 rb3rb2rb1rb0 rc3rc2rc1rc0
The addition result of two register files registers (represented by rb3rb2rb1rb0
and rc3rc2rc1rc0) is stored in the register file register a (represented by
ra3ra2ra1ra0).

In a real programmable processor we need much more instructions (perhaps
100 or more) [20]. In the next we extend the instruction set by introducing
three more instruction types.

Load-constant instruction – 0011 r3r2r1r0 c7c6c5c4c3c2c1c0
A binary number (represented by c7c6c5c4c3c2c1c0), known as a constant, is
loaded into the register (represented by r3r2r1r0 bits). The constant is a value,
part of the program.

Subtract instruction – 0100 ra3ra2ra1ra0 rb3rb2rb1rb0 rc3rc2rc1rc0
The subtraction result of two register files registers (represented by
rb3rb2rb1rb0 and rc3rc2rc1rc0) is stored in the register file register a
(represented by ra3ra2ra1ra0).

Jump-if-zero instruction – 0101 ra3ra2ra1ra0 o7o6o5o4o3o2o1o0
This instruction specifies that if the content of the register defined by
ra3ra2ra1ra0 bits is 0, we have to load the PC value plus o7o6o5o4o3o2o1o0.
The result is an 8-bit number in 2’s complement form.

 94

The addressing mode of the instruction shows the method in which the address
field is defined. Several addressing modes exist, as [38]:
- Direct Addressing, wherein the effective address is given in the

instruction;
- Immediate Addressing, wherein the operand for the instruction is part

of the instruction itself;
- Indexed Addressing, which allows that the stated address in an

instruction could be added to the content of a so called index register;
- Indirect Addressing, which works as a pointer, indicating the location in

which the effective address (of the stated address in the address field)
can be found;

- Relative Addressing, wherein the stated address in the instruction is
added to the content of the program counter to produce the effective
address;

- Page Addressing Modes, used when the microcomputer memory is
larger than can be directly addressed by an instruction (the memory
might be divided into pages).

In a microcomputer system it is vital to handle the timing of signals which
appear at the interfaces between their main components: a microprocessor,
memory units, I/O registers, and peripheral devices.
The interfacing ensures the signal compatibility between the memory units and
I/O registers to the microprocessor buses. This area involves the ability to
handle buses timing and control, and the data transfer at a given time between
the component and the microprocessor. The interfacing is responsible to make
proper connections between microcomputer and peripheral devices, data
channels, and controllers.
The I/O ports, handshaking, main memory interfacing, direct memory access,
program interrupts, microprocessor clocks etc. support the compatible
interconnection (regarding to timing, data format and signal type) between a
microprocessor with various system elements.
These topics will be discussed within the framework of a new book dedicated
only to microprocessors and microcomputers.

 95

References

[1] http://www.liacs.nl/~stefanov/courses/DITE/lectures/DITE01.pdf

[2] http://educypedia.karadimov.info/library/218-1.pdf

[3] http://www.gutenberg.org/zipcat.php/15114/15114-pdf.pdf

[4] http://educypedia.karadimov.info/library/Boolean_algebra.pdf

[5] www.cpe.ku.ac.th.

[6] http://www.liacs.nl/~stefanov/courses/DITE/lectures/DITE02.pdf

[7] http://www.liacs.nl/~stefanov/courses/DITE/lectures/DITE03.pdf

[8] www.ddpp.com/DDPP3_pdf/IEEEsyms.pdf

[9]http://academic.evergreen.edu/projects/biophysics/technotes/misc/bin_math.
htm

[10] http://www.utdallas.edu/~dodge/EE2310/lec3.pdf

[11] G. S. White, Coded Decimal Number Systems for Digital Computers,
Proc., IRE,Vol.41, No.10, pp. 1450-1452, October, 1953.

[12] http://www.inf.fu-berlin.de/lehre/WS00/19504-V/Chapter1.pdf

[13] A. Anand Kumar, Fundamentals Of Digital Circuits, PHI learning Pvt.
Ltd. 2003

[14] http://www.cis.upenn.edu/~palsetia/cit595s08/Lectures08/ErrorCD.pdf

[15] http://en.wikipedia.org/wiki/Unicode

[16] http://www.liacs.nl/~stefanov/courses/DITE/lectures/DITE04.pdf

[17] S.Givant, P. Halmos, Introduction to Boolean Algebras, Springer, Series:
Undergraduate Texts in Mathematics, 2009

[18] http://www.asic-world.com/digital/combo2.htm

[19] http://www.electronics-tutorials.ws/combination/comb_4.html

[20] F. Vahid, Digital Design, John Wiley & Sons Inc. 2007

[21] http://www.analog.com/static/imported-files/tutorials/MT-083.pdf

[22] R. P. Jain, Modern Digital Electronics (4th Edition), Tata McGraw Hill
Education Private Limited, 2010

[23] http://www.ti.com/lit/ml/sgyn133/sgyn133.pdf

 96

[24] D. D. Givone, R. P. Roesser, Microprocessors/Microcomputers An
introduction, McGraw-Hill Book Company, 1980

[25] http://www.uotechnology.edu.iq/dep-
eee/lectures/4th/electronic/microelectronics/part1.pdf

[26] http://www.liacs.nl/~stefanov/courses/DITE/lectures/DITE07.pdf

[27] https://maxwell.ict.griffith.edu.au/yg/teaching/dns/ds_module3_p1.pdf

[28] http://www.scribd.com/doc/36619372/114/Ring-Counter-Applications

[29] https://maxwell.ict.griffith.edu.au/yg/teaching/dns/dns_module3_p2.pdf

[30] https://maxwell.ict.griffith.edu.au/yg/teaching/dns/ds_module3_p1.pdf

[31] V. A. Pedroni: Digital Electronics and design with VHDL, Elsevier 2008

[32] http://www.liacs.nl/~stefanov/courses/DITE/lectures/DITE11.pdf

[33] http://en.wikipedia.org/wiki/Word_(computer_architecture)

[34] http://en.wikipedia.org/wiki/IBM_System/360

[35] http://en.wikipedia.org/wiki/Instruction_cycle

[36] http://en.wikipedia.org/wiki/Honeywell_316

[37] http://www.liacs.nl/~stefanov/courses/DITE/lectures/DITE12.pdf

[38] R. S. Goankar, Microprocessor Architecture, Programming and
Applications with 8085, 5thEdition, Prentice Hall

[39] http://cseweb.ucsd.edu/classes/sp08/cse140L/lectures/lab_wk9.pdf

 97

Further References

- J. E. Whitesitt: Boolean Algebra and Its Applications, Courier Dover
Publications, 1995

- D. D. Givone, Digital Principles and Design, McGraw-Hill, 2003

- J. F. Wakerly:Review: Digital Design: Principles and Practices, Pearson
Prentice-Hall, 2012

- M. M. Mano, M. D. Ciletti: Digital Design, Pearson Education, 2008

- Jr. C. H. Roth, L. L. Kinney, Fundamentals of Logic Design, Cengage
Learning, 2009

- J. F. Wakerly, Digital Design: Principles and Practices Package (4th Edition),
Pearson Prentice Hall, 2005

- A. P. Godse, A. Deepali, Godse Digital Techniques,Technical Publications,
2009

