Rita Lovassy

Digital Technics

Kand6 Kalman Faculty of Electrical Engineering
Obuda University
Budapest, 2013

Preface

Digital circuits address the growing need for cobepu networking
communications in the technological world today.arffdg from the
development of the integrated circuit in 1959 thbes been a continuous
interest in the understanding of new digital desicapable of performing
complex functions.

It is the intent of this book to give an overview tbe basic concepts and
applications of digital technics, from Boolean dgeto microprocessors. The
book highlights the distinction between combinagioaircuits and sequential
circuits, deals with numeral systems, and givelear overview of main digital
circuits, starting from gates through latches dipdffops.

In the case of combinational circuits, further idistion between logic circuits
and arithmetic circuits is provided. Furthermore the last two chapters, the
book develops, in detail, the main memory strugurgives a basic
microcomputer organization, and introduces a ty8elait microprocessor.

The material in this book is suitable for one ootsemesters’ course of the
bachelors’ degree program in electrical engineeadngs also well-fitted for
self study. The aim is to acquaint the future eegra with the fundamentals of
digital technics, digital circuits, and with theinaracteristics and applications.
The book includes, as additional features, comprake examples and figures.
At the end of each chapter a series of problemgiaes, which intend to give
a broader view of the applicability of the concepts

This book could be readily used in a completely agwroach, as follows:

1. Number systems (Chapter 2)

2. Combinational logic networks (subsection 1.5) witirious Boolean
logic gates followed by switches and implementatiérBoolean logic
gates using transistors (subsection 3.1. Then odpéecd related to
Boolean algebra and combinational logic optimizationinimization
(subsections 1.1-1.4)

3. Sequential logic networks (subsection 3.2) with céyonous and
asynchronous circuits

4. Microprocessor basics (Chapter 5) including mematyuctures
(Chapter 4)

Contents

11
1.2
1.3
1.4
15

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4

Fundamental Principles of Digital Logic

Boolean Algebra and its Relation to DigitaldDits
Truth Table and Basic Boolean Functions

Boolean Expressions
Minimization of Logic Functions
Combinational Logic Networks

Number Systems

Positional Number Systems

Binary Arithmetic

Signed Binary Numbers

Binary Codes and Decimal Arithmetic
Functional Blocks

Logic circuits and Components

Digital Electronic Circuits
Sequential Logic Networks
Flip-Flops

Registers and Counters

13
23

30

30
34
38
40
45

56

56
60
62
70

4 Semiconductor Memories and Their Properties

4.1 Volatile Memories
4.2 Nonvolatile Memories
4.3 Memory Expansion

5 Microprocessors Basics

5.1 Basic Microcomputer Organization
5.2 General Purpose Microprocessor
5.3 Instruction Sets

References

79

79
83
86

89

89
91
92

95

Chapter 1

Fundamental Principles of Digital Logic

In general asignal can be defined as a value or a change in the \aflwee
physical quantity. The signal represents, transmitstores the information.
The two main types of signal encountered in praciie analog and digital.
The analog signalis a continuous signal, which represents the métion
directly with its value. The time evolution of thenalog signal can be
represented by a continuous function. It changesiraoously in time and it
can cover fully a given range, see Figure 1.1. facfice the analog signal
usually refers to electrical signals: especiallitage, but current, field strength,
frequency etc. of the signal may also represeotimnétion.

For example, in sound recording, the voice (acoushtirations) is transformed
by microphone (electro-acoustic transducer) inteekaetrical signal (voltage).
Its characteristics are frequency range, signaletige ratio, distortion, etc.
Analog circuits are designed for handling and processing analggas and
their input and output quantities are continuouke Tadvantages of such
circuits are their ability to define infinite amdsnof data, and they also use
less bandwidth.

Signal

At t
%

Figure 1.1 Analog signal

1

The analog signals have easy processing, whiclkaderby analog circuits.

The primary disadvantage of analog signals andognaircuits is their noise
sensitivity. As the signal is transmitted from smuto a distant destination the
unwanted noise and disturbance introduced by etegh ia the signal path
deteriorates the signal quality.

The digital signal contains the information in discrete symb(dsy. numbers
in coded form). It has discrete or quantized (thées of such a signal are
restricted to belong to a finite set) values. Thgna can be represented by
integer numbers. One of the most common represemsadf a digital signal is
the binary signal, which has a set of two elemehgsidl.

The digital signal represents the information daddnto elementary parts in a
numeric form using appropriate encoding. Samplisgperformed at given
times, and the numbers are attached to it. The¢atlgignal therefore represents
coded information, see Figure 1. 2.

4 Digital signal

11 12 |13 |12

Figure 1.2 Digital signal

Digital systemsmanage discrete quantities of information; theysaritable for
handling and processing digital signals. For exampldigital circuit is able to
manipulate speech and music which are continuaus-@mscrete) quantities of
information. The signal is sampled at 8000 sampérssecond. Each sample is
guantized and coded by a single byte. After thaepsswe have discrete
guantity of information:

*The cost is 64 Kbit/s which is too much.

Digital Signal Processing techniques allow usriadthis amount down to as
low as 2.4 Kbit/s [1].

Digital systems are less expensive, with reliabfgeration, are easy to
manipulate, are flexible, are immune to noise terain extent, etc.

Some disadvantages of digital circuits are the $ampof errors; digital
communications require greater bandwidth than gn&botransmit the same
information.

Different data converters are the interfaces betva®log devices and digital
systems. In many applications it is need to conaeranalog signal in a digital
form suitable for processing by a digital systemn Analog-to-digital
converter (A/D) measures the analog signal at a certain aaté turns each
sample into some bit values. THagital-to-analog (D/A) converters produce
an analog output from a given digital input.

The next chapter introduces the basic principledigital logic, and deals with
the study of digital systems. The digital compugethe best known of such
systems. Within a digital system the elementarytsunperate like switches,
being either ON or OFF. The logic circuits can lbdthup from any basic unit
that has two different states, one for the 1 imuuput, and one for the 0
input/output. The complicated logic functions dre interconnection of a large
number of switches called logic gates. The formathramatical tool which can
be used to describe the behaviour of logic netwark=alled Boolean algebra.
In this chapter various types of Boolean algebiaressions will be introduced,
and the description of logic connection and theiplementation with various
logic gates will be discussed.

1.1 Boolean Algebra and its Relation to Digital
Circuits

The operation of almost all modern digital compsiierbased on two-valued or
binary systems. Propositions may be TRUE or FAL8RJ are stated as
functions of other propositions which are connedigdhe three basic logical
connectives: AND, OR, and NOT. [2].

Boolean algebra was introduced in 1854 by GeorgeldBm his book: An
Investigation of the Laws of Thought [3]. The coamen between Boolean
algebra and switching circuits was established tgu@: Shannon [4He
introduced the so called switching algebra as anraaalytical tool to analyze
and design logic circuits and networks. Typicathe units are in the form of
switches that can be either ON or OFF (mappingdaosistor-switches; high
voltage means logic 1 and low voltage means logic O

The binary logic systems use the Boolean algelwra mathematical system,
defined on a set of two-valued elememtswhich the values of variable are 1
and 0. The binary variables are connected throogit loperations. Special
elements of the set are the unity (its value isagnvl) and the zero (its value is
always 0). The binary/logic variables are typicatlgpresented as letters:
AB,.C,....X,Y,Zor ab,c,...,x,y,z.

3

Logic Variables

Logic variables are used to describe the occurrefevents. It can have two
values i.e. TRUE or FALSE or YES/NO which referstite occurrence of an
event. Their meaning corresponds to the everydagning of the words in
guestion. TRUE corresponds to logic-1 and FALSEesponds to logic-O.
Here 1 and 0 are not digits; they do not have amyeric value.

The levels represent binary integers or logic lewvadl 1 and 0. In active-high
logic, HIGH represents binary 1, and LOW represémgary 0. The meaning
of HIGH/LOW is connected with the usual electricapresentation of logic
values, they correspond to high(er) and low(ereptls (voltage levels) e.g.
(nominally) +5 V and 0 V, respectively.

Basic Boolean Operations

There are several Boolean operations. The mostriaqtcare:

- AND (conjunction) — represented by operatossdr “ [1”

- OR (disjunction) — represented by operators$ or “ [1”

- NOT (negation, inversion, complementation) - esgnted by operator-
or denoted by overline (bar).

The AND and OR logic operations are two- or mudrables, the logic
negation is a one-variable operation.

The result of AND operation is TRUE if and only bbth input operands are
TRUE. In logic algebra the AND operation is also callethaby/logic
multiplication. The AND operation between two véies A and B is written
as A-B or AB. The postulates for the AND operatiwa given in Table 1.1.

A B AB
o -0 0
o -1 = 10
1 -0 =10
1 -1 1

Table 1.1 Definition of the AND operation

The result of OR operation is TRUE if any input gpels are TRUE. In logic
algebra the OR operation is also called binaryd@gidition. The OR operation

4

between two variables A and B is written as A+BeTgostulates for the OR
operation are given in Table 1.2.

A B A+E
0o+ 0 =10
o+1 =1
1+ 0 =1
1+1 =1

Table 1.2 Definition of the OR operation

Electrical implementation of AND and OR are serdesd parallel connection of
switching elements (see Figure 1.3) like electrdmeaccal relays or n-and p-
channel FETs in CMOS circuitry (see Chapter 3).

n-0=0 B L |

1:0=0 — e 0
1-1=1 T]
0+0=0 l > 0
n;){n
n0+1=1 v 1
P
1+0=1 l " 1
—n}{n—
1+1=1 a 1
Pl

Figure 1.3 Electrical implementation of the AND a&@& operations

The result of NOT operation is TRUE if the singhput value is FALSE. In
this case the complementation of A is writtenfas

5

fA=0:F=A =1andifA=1F=A =0

A A
0 1
1 0

Table 1.3 Definition of the NOT operation

Each element of the set has its complementarytakmging to the set. A two-
valued Boolean algebra is defined as a mathematysaém with the elements
0 and 1 and three operations, whose postulategivae in Tables 1.1 to 1.3.

Boolean Theorems
Basic identities of Boolean algebaae presented in pairs i.e. with both AND

and OR operations.
Let A be a Boolean variable and 0, 1 constants

A+ 0 =A; Zero Axiom; A + A = A, Idempotence
A -1 =A; Unit Axiom A - A =A; [dempotence
A + 1 =1; Unit Property AA=1; Complement
A - 0 =0; Zero Property AA =0; Complement

X = A; Involution
Let A, B and C Boolean variables

1. Commutativity: the order of operands can bensza
A-B=B-A

A+B=B+A

2. Associativity: the operands can be regrouped

A-(B-C)=(A-B)-C=A-B-C
A+B+C)=(A+B)+C=A+B+C
The order of operations is given by the parentheses
3. Distributivity: the operands can be reordered
A-B+C)=A-B+A-C

6

A+(B-C)=(A+B)-(A+C)
Uniting theorem (absorption law)

A-(A+B)=A
A+A-B=A

These theorems are only valid in logic algebra, ey are not valid in the
ordinary algebra! In the binary system is some lohdymmetry between the
AND and OR operators which is called duality. Evequation has its dual pair
which can be generate by replacing the AND opesatwith OR (and vice

versa) and the constants 0 with 1s (and vice versa)

De Morgan’s Laws

De Morgan’s laws or theorems occupy an importaatelin Boolean algebra.

De Morgan’s theorems may be applied to the

- negation of a disjunction: A+ B=A [IB

Since two variables are false, it's also false #thter of them is true.

- negation of a conjunction’A IB=A + B

Since it is false that two variables together ane,tat least one of them should
be false. The De Morgan’s theorem is an importaot in the analysis and

synthesis of digital and logic circuits. Its gerizi@ion to several variables is
stated below:

A+B+C+.= AOBOCL.

ADBOCO=A+ B+ C+...

1.2 Truth Table and Basic Boolean Functions

In order to describe the behavior and structur logic network it is necessary
to express its output F as a function of the ijautables A, B, C...

A Boolean function domain is a set of n-tuples sf&d 1's, and the range is
an element of the set {0, 1}. The values of thecfion are obtained by
substituting logic-0 and logic-1 for the correspmgd variables in the
expression [4]. Theruth table is a unique representation of a Boolean

7

function which shows the binary value of the fuontifor all possible
combinations of the independent variables. In aazsBl variables, the truth
table has N + 1 columns, antl &ws, for all possible binary combinations for
the variables. In generaltrath table consists of

- column for each input variable

- row for all possible input values

- column for resulting function value

For given N binary variable there exit different Boolean functions of
these N variables.

One Variable Boolean Functions
In case of one variable, there exist four Boolaarcfions.

The names of these functions and the truth tatdel€r1.4) are given below:
For=0 function constant O

Fi=A function inversion (NOT)

Fi=A function identity

Fi=1 function constant 1

A Fo Rt F! Fs'
0 0 1 0 1
1 0 0 1 1

Table 1.4 Truth table - one variable Boolean fuortdi
Two Variable Boolean Functions
In the case of two variables the number of possitpgat combinations is?= 4,

therefore the number of possible two-variable fiomst is 2 = 16. Each
function describes a single or complex logic operatsee Table 1.5.

A B F02 F12 F22 F32 F42 F52 F62 F72 F82 F92 F102 Fl 12 FlZ2 F132 F142 Fl 52

ojfolo o Jolo] o] o[o] of 2 1| t[1| 1] 1] 1] 1
ol1lofoJolo| +| 1 1] 1] of o o o 1| | 1] 1
1]olofofasls[of o] 2 1] o] of 1| 1| o| o 1 1
t[1]lo 1ozl o[t] o 1] o] 1] o] 1| o] 1] of 1

Table 1.5 Truth table - two variables Boolean fiorct

F?=0 function constant 0

F°=A OB function AND

F2=A OB function inhibition

2= A function identity

FZ=A [B function inhibition

F=B function identity

F’=A OB+A OB =AOB function antivalency, exclusive-OR
(XOR)

F”=A+B function OR

Fe°=A+B function NOR

F’=A[B+A OB =AOB function equivalency, exclusive-NOR
(XNOR)

Fi’ = B function inversion

Fi’=A+B function implication

Fi7=A function inversion

Fs=A+B function implication

Fii’= A OB function NAND

Fis’ = function constant 1

A logic function can be specified in various ways:

1. Truth table

2. Boolean equation, algebraic form

3. Maps (see subsection 1.4)

4. Symbolic representation, logic gates (see stioset.5)

The conversion of one representation of a Boolearction into another is
possible in a systematic way.

1.3 Boolean Expressions

Obtaining a Boolean expression from a truth table

In the next example a Boolean expression of theg@bles is obtained from a
truth table, see Table 1.6.

The logic expression is a function (formula) cotisg of Boolean constants
and variables connected by AND, OR, and NOT opamatiThe expression is:

F= ABC + ABC + ABC + ABC

i A (29 B (2) c@® F
0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Table 1.6 Truth table for the Boolean expression

Each term represents an input variable combinafonwhich the function
value is F = 1, consisting of all variables eithrenegated or in unnegated form.

Sum-of-Products (SOP) Form, the Minterm Canonical Brm

The unique algebraic form readout from the trutfidaas AND connections of
OR operations is calleHum-of-Products (SOP) form, disjunctive canonical
form, disjunctive normal form (DNF) orminterm canonical form.

Minterm

The minterm is a term composed from the varialdggclproduct, in which all

the variables appear exactly once, either complésdear uncomplemented.
The terms of the disjunctive canonic form are cafi@nterm [5]. There are2

distinct mintermgor N variables.

The generalized form is denoted by’

where N is the number of independent variables,ignuinterm index) is the
decimal value of the binary number correspondinthégiven combination of
the independent variables.

To illustrate the notation, consider the previausction expression

F = ABC + ABC + ABC + ABC

10

Femi+ i+ i+ =3 (1, 2,5,

Product-of-Sums (POS) Form, Maxterm Canonical Form

The unique algebraic form readout from the truthldaas OR connections of
AND operations is calledProduct-of-Sums (POS) form, conjunctive
canonical form, conjunctive normal form (CNF) or maxterm canonical
form.

Maxterm

There is a dual entity called maxterm which is adpct of sums expansion
(conjunctive normal form). The maxterm is a termmposed from the
variables logic sum, in which all the variables egp exactly once, either
complemented or uncomplemented. There dtedi®tinct maxtermsfor N
variables [5].

The generalized form is denoted by’

whereN is the number of independent variables, and | {eraxindex) is the
decimal value of the binary number correspondinthégiven combination of
the independent variables.

To find the conjunctive canonic form, we considee hegated function from
Table 1.6 (seerows nr. 0, 3,4, 7)

F (A, B, C)= ABC + ABC + ABC + ABC
F=n+ni+n +nf

Based on De Morgan’s law the conjunctive canonicah of function F can

be obtained from the negated function expression dgypropriate

transformations resulting in a product-of-sums (P@8. in a product of

maxterms. The complemented function consists cddhminterms, where the
function value is F = 0.

F(A B, CO=F(A B, Q =ABC +ABC +ABC +BC =
(A+B+Q)(A+B+](A+B+Q(A+B+

11

3

F= M MMM 2=] (7. 4.3.0

Minterm to Maxterm Conversion

Let's start from the original function disjunctivermal form

F= i+ + nf + ni
The expression of the negated function, also ijuddive form (index i) is
F=nf+ni+ nf+n

The function expression in conjunctive normal fofmgex | = 2 -1- i) is
F=MIMiM:M 3

The relationship between the minterm indexe$ the complemented function
and the maxternt of the uncomplemented function (written for the ecad
three variables) isi+1=7 =21

In general, we can write for a function with N \zdoles

i+1=2"-1

We can state that: all minterm is the complemerat wfaxterm and vice versa.

= M

and M'=m"

-1 PARE

The sum of all the minterms of an N variable fumatis 1, the product of all
the maxterms is O.

2N 2N
d>m' = 1andrlMgN =0
i=0 I i= -

12

1.4 Minimization of Logic Functions

The logic functions are used to design digital dogrcuits. The aim is to find
an economic, small, fast and cheap implementationhe specified logic

network. In many cases the optimization, simplifima of the network means
to reduce the number of electronic componentsnthmber of gates level, the
number of inputs-, interconnections etc. Since gkpressions resulting from
simplification are equivalent, the logic networkst they describe will be the
same.

Boolean function simplification methods are:

- Algebraic minimization, using Boolean algebraanisformations

- Graphic minimization, using the Karnaugh-map

- Numeric (tabular) minimization, using Quine-Mc&key- method.

- Heuristic algorithms, (e.g. algorithms like ESFFIE0).

In the next the first two methods will be discussedetail.

Algebraic minimization using Boolean theorems

The laws and identities of Boolean algebra allowtasimplify a minterm

expression. A significant simplification of mintesnyields to an equivalent
new function expression with fewer Boolean opesat@nd variables.
Unfortunately, with this procedure it could be ditfit to find the ,simplest”

expression because the Boolean expressions aralgotthmic. Hence, it is
not always obvious which theorem to apply at eaep.sDuring algebraic
minimization, systematically, the basic propertasd theorems of Boolean
algebra had to be applied. In this way, step by she adjacent minterms
(differing by ONLY one variable, which appears cdempented in one term
and uncomplemented in the other) are contacted, thedcorresponding
variables are eliminated.

For example, to simplify the function

F = ABC + ABC + ABC + ABC
we can proceed as follows:
F = ABC + ABC + ABC + ABC=BC(A +A) + BC(A + A)
= BC + BC
13

A similar approach can be applied to the conjurcform, adjacent maxterms
are contacted, and the corresponding variableslangated.
For example, to simplify the function

F:(A+ B +f:)(A+_B+_(j
we can proceed as follows:

F=(A+B+_(j(A+_B+_() :(H)

(A+C (B T3)(A+C) +BB
=A+C
Graphic minimization, Karnaugh map (K-map)

Karnaugh maps were invented by Maurice Karnaugh, a telecommuitinat
engineer. He developed them at Bell Labs in 1953lewktudying the
application of digital logic to the design of tebeme circuits. This method is
typically used on Boolean functions of two, threefaur variables - past that,
other techniques are frequently used. [4].

The Karnaugh map, known also as Veitch diagrama isnique graphic
representation of Boolean functions which providetechnique for the logic
equation minimalization. The array of cells consatine truth table information.
Mapping can be applied both to minterms and maxdeaswell. The K-map of
a Boolean function of N variables consists 8f @lls and is built up from
adjacent cells having terms which differ only inedoit (place) [6]. Adjacent
terms are where onlpne logic variable appears in complemented and
uncomplemented form, while all others remain theea-or example:

(011) and (0D), also Q00) and 100)

This arrangement allows a quick and easy simptiboakeeping some simple
rules. In the case of 5 or more variables the adijacells scheme becomes
much more complex.

Minimal Sums

One method of obtaining a Boolean expression fradfamaap is to select only
those minterms of the normal expression that hdogie-1 value.

14

Two Variable Karnaugh Maps

The two-variable K-map contains four cells, covgrail possible combinations
of the two variables as is shown in Figure 1.4.rEsmwv of the truth table
corresponds to exactly one cell. If the truth taiol isone the respective cell
contains aone Usually the zeros are not indicated, and an enggty is
considered to contain zero. Figure 1.4 a presents also the numbering of K-
maps cells. Figure 1.4 ¢ shows a two variable Idgnction truth table and the
corresponding K-map. The logic function would bi¢ 1

A=0AND B=10ORA=1AND B =1.

If the row or column of the map in which theappears is labeled byla the
variable appears uncomplemented, otherwise the ahlari appears
complemented. Read through the K-map cells conteatfunction expression

is: F= AB + AB

E E Truth table
E=0 E=1 0 1
A A A | B Term in logic equation
equal to 1

A=0 0 iE iR —
] 1]] AR
1 _ 0] 1 AB
A=1 AR AR ~
5 3 1 0 AR
1 1 AR

a) b

B Truth table
0 1
A 4| B F

0 1 0 0 0

0 1 1

1 1 1 0 0

1 1 1

£
Figure 1.4 Karnaugh maps: a) two-variable map;dnjaspondence with truth table; c)example

Using the algebraic minimization, the function cde rewritten as:
F=AB+AB=(A+A|B=B

15

The K-map advantage is that the adjacent cellscofwhiffer by ONLY one
variable, appear complemented in one cell and uptamented in the other)
can be grouped visually to eliminate redundantaes. Thus, grouping of the
two cells, see Figure 1.5, immediately we obtasgimplified function form.

B

0 1
A

Figure 1.5 Karnaugh map;= B
Three - Variable Karnaugh Maps

The K-maps edges are headed using a one-step (CGds)

TheGray codeis a series of"2code words, each of N-bits, in such a sequence
that any adjacent code words differ only in one ibitluding the first and last
words too (cyclic property).

For example, in case of N = 2 the sequence of aantds is:

(00), (01), (12), (01)

The Hamming distance of two code words of equal length is the number of
positions at which the corresponding codes areemifft. For example, 10110
and 01101 differ in 4 positions, the distance betwthem is 4.The Hamming
distance between any two adjacent code words of5ttag code is one (see
Table 2.4).

When K-maps involve three variables; the cells @spnt the minterms of all
variables, as is shown in Figure 1.6 a. The numbedf K-maps cells is
presented in Figure 1.6 b. In Figure 1.6 ¢ thodamecns and row are signed
where the corresponding variables have logic-le/alu

Top cells are adjacent to bottom cells. Left-edgiés@are adjacent to right-edge
cells. Rows and columns on the opposite sideslspeadjacent.

In the process of contraction and minimizationfilowing steps and rules are
necessary:

- introduce ones in each cell of the K-map for which the correspaogd
minterm in the function is equal tme,

16

- group adjacent cells which containes The number of cells in a group must

be a power of 2.
- the process is continued until no more variabkas be eliminated by further

contractions. The groups cover all cells contairtings

BC g9 Y il 11 10 BC g 01 11 10
A A
4 g ABC | EBC EBC EBC 0
] 1 3 o
1 ARC ABC ABRC ARC 1
4 5 7 3
B
a) b)

c) €

Figure 1.6 Three-variable Karnaugh maps

In the case of three variables K-map:

- If a group of four adjacent cells (in-line or s@e) is contracted, the result
yields in a single variable.

- If a group of two adjacent cells is contractdue result yields in a two-

variable product term.
- A single cell which cannot be combined represarttwee-variable term.

Example 1.1Use the K-Map to simplify the following expression

a) F = ABC + ABC + ABC + ABC; (Truth table, see Table 1.6)
The map is shown in Figure 1.7, and the indicatesugng leads to the
simplified expression

F=BC + BC

17

BC 00 01 11 10

BC BC
Figure 1.7 Karnaugh map for Example 1.1 a

b) F=ABC + ABC + ABC

EC 00 01 11 10

o | 1] L[

ABC
Figure 1.8 Karnaugh map for Example 1.1 b

Figure 1.8 shows a split rectangular grouping asthgle cell which cannot be
combined (represents a three-variable term). Tinpldied expression is:

F=AC + ABC

In Figure 1.9 the optimal grouping of 1-cells an@wn. The minimal sums for
K maps are given.

BC
A

00 01 11 10 BC 00 01 11 10

0

1 ‘1 1‘ 1

F=B F=AC + BC + AE

Figure 1.9 Grouping on three-variable Karnaugh maps
18

Four-Variable Karnaugh Maps

A four-variable map has 16 cells, as shown in Feglid0. The grouping rules
are the same as for three variables K map. The igoa find the smallest

number of the largest possible sub cubes that dbeet-cells.

c D
CD w & CD
00 01 11 10 00 01 11 10
AB AB
oo ABCD AECD o0
B 0 1 3 2
" .
01 ABCD 01
4 5 7 6
11 ABCD 11
12 13 15 14
10 ABCD ABCD 10
g 9 11 10

a) b)

5
Figure 1.10 Four-variable Karnaugh maps

Example 1.2 Use the K-map to simplify the logic function
minterms

4
F=>(0,2,5,8,09,10,11, 12, 13, 15)

The corresponding Karnaugh map is given in Figdrel.

19

givday the

CD
0o 01 11 10

01 1

Figure 1.11 Karnaugh map for Example 1.2

The simplified expression is
F=A+BCD+BC

The obtained terms are called the functime implicants. If a minterm of a
function is included in only one prime implicanben this prime implicant is
anessential prime implicantof the function [7].

In this way the K-maps permit the rapid identifioat and elimination of
potential race hazards. The simplification resudiymot be unique.

Example 1.3Simplify the Karnaugh-map shown in Figure 1.12.

CD
AB

00 01 11 10

oo

01 1 1 1

Figure 1.12 Karnaugh map for Example 1.3
20

The simplification result consists of 6 prime ingalints:

F=AD + CD + AC + ABD + BCD + ABC

Essential prime implicants for minimum cover
F=AD+ AC+ BCD

Karnaugh Map for Minimalization of a Four Variables Logic Function
Expressed in Product-Of-Sums

Sometimes the Product-Of-Sums form of a functiosingpler than the Sum-of
Product form. In a very similar way as in the poes subsection (Four-
Variable Karnaugh Maps), two adjacent maxtermsheanontracted to a single

sum. The involution identity is applied for the iog‘unction:l_: =F. In the
minterm K-map the simplifications are made usingoge obtaining the

minimalization ofF.

Example 1.4 K-map method: contracting zeros (second “optimwsualution
for the function given in Example 1.2)
Use the - map to simplify the logic function givieythe minterms

4
F=)(0,25,8-1¢

The corresponding Karnaugh-map is given in Figur&l.

In the next the following rule is used: ReplaceyFFb and 0’'s become 1's and
vice versa.

E = ABD + ABC + ACD

F=F = ABD + ABC + ACL

F =(A+B+D)(A+_B+_C)(A+C +_[))

21

(A+CHD) (AYB+C)
D

[oly] 01 11 10
AR

o0 1 0 0 1
ol 0 1 0 j 0

/ 1 1 1 1

Figure 1.13 Karnaugh map for Example 1.4

(A+B+D)

Incompletely Specified Logic Function

In the expression of incompletely specified logindtion are such input
combinations to which the Boolean function is npedfied. The function
value for these combinations is calldoh't care and the combination is called
don’t care condition.

In an implementation the don’t care terms value fpearbitrarily O or 1. The
selection point of view is if they are able to gexte prime implicants in order
to obtain the most advantageous solution.

Don't care conditions are indicated on the K- mapslash entries. Figure 1.14
shows a Karnaugh map involving don’t care condgion

CD
AB

oo 01 11 10

o] 0 - 0 1

01 -] 0 1

Figure 1.14 Karnaugh map with don’t care conditions
22

The map of Figure 1.14 can be used to obtain amaihsum:

F=ACD + CD

1.5 Combinational Logic Networks

Logic networks are implemented with digital cirqgiand in reverse, digital
circuits can be described and modeled with logitwogks. For the analysis
and synthesis of logic network the Boolean algébrssed.

The logic network (logic circuit) processes theuattvalues of the input
variables (A, B, C, ..) and produces accordinglye toutput logic
functions (., R, ...).

Logic networks described by truth tables or Boolexpressions can be
classified into two main groups:

1. Combinational networks: the output values depamlg on the present input
variable values;

2. Sequential networks: the output values dependbaih the inputs to the
operation and the result of the previous operatideiworks having the
memory property will be studied in subsection 3.2.

The combinational logic network is the simplestitogetwork. The logic
operations on the input variables are performedtantaneously” and the
result will be available on the output at the saimee, (except for the time
delay due to the internal operation of the cirquit$e output variables can be
represented as logic functions of the input vagablFigure 1.15 shows a
combinational logic network as a black box.

F=f(AB,C..N i=12.,N

COMEINATICIAL

LOGIC NETWORE

Input logic Cutput logic
variables variables

—
— >
Fu

N

Figure 1.15 Combinational logic network

23

The combinational circuit maps an input (signaljnbination to an output
(signal) combination. The same input combinationags implies the same
output combination (except transients). The revésseot true. For a given
output combination different input combinations ¢eong.

Combinational circuit examples: binary arithmeticcuaits (half-adder, full-
adder, etc.) (see subsection 2.2), binary-codetvr@aode (BCD) — seven
segment display (see subsection 2.4), various emsodnd decoders,
multiplexers and demultiplexers, comparators (s#saction 2.5), etc.

The combinational circuits are the interconnectiarisa large number of
switches called logic gates.

Logic Gates

Logic gates as electronic circuit components agenehtary building blocks of
logic circuits which implement basic Boolean funas of one or more
variables.

Figure 1.16 lists the symbols of the main logicegawith two inputs. The NOT
gate implements the function inversion, having amgut. A simple triangle
symbol denotes a buffer amplifier, which servesIDENTITY function. The
small circle on the input or output of a gate metinessNOT operation. Based
on De Morgan’s identities:

F=AB=(Z+_B) andF=A+B:é__A_}

While the NOT, AND, OR functions have been desigasdndividual circuits
in many circuit families, by far the most commonndtions realized as
individual circuits are the AND-NOT (NAND) and OREN' (NOR) circuits.
A NAND can be described as equivalent to an ANDnelet driving a NOT
element. Similarly, a NOR is equivalent to an ORn&nt driving a NOT
element. The reason for this strong bias favormgeiiting outputs is that the
transistors which preceded it are by nature inveiwe NOT-type devices when
used as signal amplifiers.

24

IDENTITY

A F A [F=4
NOT N > . A ‘ oy
AND
A A —
F :j : F=4B=(4A+E)
OR
A A. p——
T — F=A4+B=(AB)
E E
—d
NAND
A A - —
F :2 “/\ F=(AB)=A+B
NOR
A A - __
F — F=(A+B)=AB
B B
—q

EXCLUSIVE OR

A 4 F=A®B=AGE
F — AB+EB
B B

NOT EXCLUSIVE OR (EQUIVALENCE)

A & F=(A®B)=46E
F = AB+AE
B B

Figure 1.16 Main gate symbols

25

The EXCLUSIVE OR and NOT EXCLUSIVE OR Functions

The final two gates symbols introduced in Figurg6lare the EXCLUSIVE
OR gate and the NOT EXCLUSIVE OR (Equality) gatte TEXCLUSIVE
OR, (XOR) called the modulo-2-sum or “antivalenogeration is denoted by
the symboll] . The EXCLUSIVE OR function forms are:

F=AOB=AB+AB
F=AOB=AB + AB
By definition the value ofA OB is logic-1 if and only if A and B variables
have different values. The complement of the EXCIMESOR operation is

the NOT EXCLUSIVE OR (called EXCLUSIVE NOR, XNOR or
“equivalency”)operation. Their expressions are:

F=(A B)=AB+AB = (AB) (AB) = (A + B(A + B) =
AK+AB+BA+BB AB + AB
F=AOB=AB+ AB

By definition the value of AIBis logic-1 if and only if A and B variables

have the same values. The EXCLUSIVE OR and NOT EXCLUSDREgates
are typically available with only two inputs.

The commercial gates (exception NOT) are often desidgar multiple inputs.
Generalized symbol shown in Figure 1.17 is freglyarged when a single gate

has several inputs.

Figure 1.17 AND gate with 8 inputs

26

The IEEE standard specifies two different types oflsyisfor logic gates [8]:
the distinctive- and rectangular-shape symbolsuréigl.16 shows the main
distinctive-shape symbols and Figure 1.18 compiéae®\ND and NAND gate
symbols. Both of them are frequently used and taedard says that it has no
preference between them. Since most digital dessgaad computer-aided
design (CAD) systems prefer the distinctive-shaprlmls, these symbols are
used in this book.

&
F A
F
B LMD
B &
A
F
MAND &
E F
B & pb—

Figure 1.18 Example for distinctive- and rectangslaape logic symbols

Standard Forms for Logic Functions, Synthesis Usingtandard
Expressions and the Corresponding Circuits with NAND or NOR Gates

All logic functions can be specified using AND, @QRd NOT operations. Both
canonical forms: Sum of Products (SOP) and Prodfickums (POS) can
specified and implemented by two-level AND-OR or-BRD gate networks,
respectively. Because the AND, OR and NOT operatiman be implemented
using either only NAND or only NOR gates, then lthem the respective
canonical forms all logic functions can be impleteenwith homogeneous
two-level NAND or NOR gate networks. Consider themsof-products
expression:

F=AB+AC
The two-level AND-OR circuit consists of a numberAdD gates equal to the

number of terms followed by a single OR gate. Thgclaircuit is shown in
Figure 1.19 a. Next we apply De Morgan’s theorerth&above function

F = AB + AC = (AB) (AC)

27

and thereforeF = F = (_ES) (A__C) . The corresponding circuit with NAND
gates is shown in Figure 1.19 b.

o
-

e

=

> e

al
al

AC

a) b)

Figure 1.19 a) AND-OR circuit; b) correspondingcciit with NAND only

Although, the expressioﬁ:T: = (_EB) (A__C) looks more complicated than

F = AB + AC, the circuit built up from NAND gates (Figure 1.bY has the
advantage that is built up from the same gate tyges$ consists of less
transistors. If we start with a product-of-sums resgion, the resulting circuit
will be a two-level OR-AND structure. If the POSpegssion is:

F=(A+B)(A+C)

Using De Morgan’s theorems, we can transform thgression as follows:

F=(A+B)(A+C)= (A+B} (A+C

HenceF = F = (A + B)+ (A + C)

The POS function two-level OR-AND structure and tdogresponding NOR
circuit is shown in Figure 1.20.

Figure 1.20 a) OR-AND circuit; b) correspondingcgiit with NOR only
28

Problems

1.1 Simplify the following expressions as far as pokesib

a) E = ABCD + ABCD + ABCD + ABCL
b) F, =AB+AB +ABCD
C) F, = ABC + A+B+C

1.2 For three logic variables prove the identity:
F=AOBOC=AOBOC

1.3Evaluate the following expressions for A=B=C;®D1=0;E=1
a) (AB + AB) + (B + C)DE

b) K(B +E) + ABCD

c) AB(C +E) +B(D + E

1.4 Convert the EXCLUSIVE OR function into NAND form astiow the
corresponding circuit.

1.5Write a Boolean expression for the logic diagramvat below:

: e
.

1.6 Find the simplest expressions in the following Kargh maps:

cp
BC o 1 1 10 00 01 11 10
N 4B

1
0 1 1 00

| 1 1

Chapter 2

Number Systems

In digital computers the information is representea string of ON and OFF
states of logic variables, a series of logic-1s kmgic-0s. This chapter covers
the positional number systems (decimal, binaryalp@nd hexadecimal), the
number conversions, representations of integera@achumbers and arithmetic
operations. Various codes and the code conversienstudied. Finally,
encoders, decoders, multiplexers, demultiplexedsarious comparators are
discussed.

2.1 Positional Number Systems

In the positional number system, or so called radeghted positional number
system the value of a number is a weighted sumtsofdigits. The value
associated with a digit is dependent on its pasitio general, the numbers, in
the base (radix) system are of the form:
N=ar!+a r'*+. +ar'+af’+a '+, .+a, ™

Where:r is the base of the number systenr1,...,-(k-1),k scalars,
a;,8,_,-3,35,a 4,...,8 natural numbers between 0 and 1, inclusive.

Decimal Number System

The well known decimal system is just one in theslaf number systems
which belongs to the weighted positional numbetesys The decimal system
is the most commonly used in our daily arithmetithe numbers in
combination of 10 symbols (digits) are called tleeichal number system. This
is a grouping system based on the repetition ofosysto note the number of
each power of the base, in this case 10. The digtigits (0 — 9) are multiplied
by the power of 10, and it is significant that gasition occupied by each digit.
“.” is called the radix point. In the case of decimamber 356.21:

N=35621= 3x10)+ (5x20)+(6x10)2%10%)+ (1 x 17
30

Binary Number System

In the binary system, the base is 2 (r = 2) andsghmbols are 0 and 1. These
numbers in positional code are expressed as pavierssof 2, and are called
bits (binary digit).

In the expressioMN =a,r’ +a, ,r' " +..+ar'+ar +a r'+..+a,r"
a,; denoteghe most significant bit (MSB);

a_, denoteghe least significant bit (LSB)

k

Conversion from binary to decimal

For example, consider the binary number 1101.01s iBhexpanded as:
110101 =(1x2)+(1xD+(0xP+(1>p+(0x3+(1%
=8+4+1+025=13.2F

Conversion from decimal to binary

Several methods exist to convert from decimal tabi and vice versa. In the
next two methods are presented:

Method 1 Descending Powers of Two and Subtraction

For numbers less then thousands, this method offersry rapid and easy
technique. The steps are:

* Find the greatest power of 2 that is close and tkas the decimal
number, and after that calculate the differencevbenh them.

* Choose a next (lower) power of 2 which is close &xs than the
subtraction result.

* Repeat the above mentioned operations until thedafuhe powers of 2
will give the decimal number. The binary answeramposed from 1s
in the positions where the power of 2 fit into thecimal number and 0s
otherwise.

For example, find the 156 decimal number binaryiedants. We list the
power of 2 s and we “build” the corresponding numbe

2 | 3 8 2 2 %222 0 3
256 | 128 64 32 16 84 2
o l1 o o 11 1 o0

31

Method 2 Division by Two with Remainder

If the number has a radix point, as a first stejis important to separate the
number into an integer and a fraction part, becdiegwo parts have to be
converted differently.

The conversion of a decimal integer part to a lyinmanmberis done by
dividing the integer part to 2 and then writing tieenainders (0 or 1). Proceed
with all successive quotients the same \&@ag accumulate the remainders.
For example, find the 56 decimal number binary egjent:

Number divided by 2 Result Remainder
56/2 28 0 LSB 4
28/2 14 0

14/2 7 0

712 3 1

3/2 1 1

1/2 0 1 MSB

56,, =11100Q

The conversion of a decimal fraction part to a binaumber is done by
multiplying the fractional parts by 2 and accuminigtintegers.

For example, find the 0.6875 decimal number bireayivalent:

Number multiplying by 2 Integer Result
0.6875x 2 = 1 0.3750
0.3750x 2 = 0 0.7500
0.7500x 2 = 1 0.5000
0.5000x 2 = 1 0.0000

0.6875,= 0101}
And 56.6875, = 111000 101,

32

Octal and Hexadecimal Numbers

Positional number systems with base 8 (octal) aagk 16 (hexadecimal) are
used in digital computers.

In octal system the eight required digits are @,tand the radix is 8.

The hexadecimal system (base 16) uses sixteendalisiimbols: numbers from
0to 9, and letters A, B, C, D, E, F to represaaitigs between ten to fifteen.

Conversion from octal or hexadecimal to decimal
The conversion is similar to the previous subsechtethod 2. This approach
is called: Division by Eight or Sixteen with Remadn. Here the numbers in

the positional code are expressed as power sdriarml 16.

For example:
327,= 3x8+ 2x8 +7x8 =2}
A2DC,,=10x16 +2x16+13x 26 + 12 x16 2605.75,

Conversion from octal and hexadecimal to binary

For example, to convert from binary to octal, theaby number three bit
groups were separated, that could be convertedtljire

011 010 111 . 001 binary number
3 2 7 : 1 octal equivalent
Vice versa:

4 5 6 : 2

100 101 110 . 010

To convert from hexadecimal to binary and revetise binary number four bit
groups were separated, that could be convertedtlyire

1010 0010 1101= A2Dss

7F36=0111 1111 00%1
33

Thenon-positional number systemaises for example Roman numerals (I = 1,
V=5 X=10,L=50,C =100, D=500and M = 000

2.2 Binary Arithmetic

Arithmetic operations with numbers in basdollow the same rules as for
decimal numbers. The addition, subtraction, muttgilon and division can be
done in any radix-weighted positional number system

In digital computers arithmetic operations are @ened with the binary

number system (radix = 2). The binary system hageraé mathematical

advantages: i.e. easy to perform arithmetic opmratiand simple to make
logical decisions. The same symbols (0 and 1) seel of arithmetic and logic.

Now we will review the four basic arithmetic opeoats, then the handling of
the case of negative (signed) numbers.

Binary Addition

The algorithm of binary addition is similar to thetdecimal numbers: aligning
the numbers with the same radix, starting the amdivith the pair of least
significant digits. Thénalf adder adds two single binary digits A and B. It has
two outputs, sum (S) and carry (C). The rules War-tligit binary addition are
the following:

A B Sum Carry

0O + 0 =0 0

1 + 0 =1 0

0O + 1 =1 0

1 + 1 =20 1 (to the next more significhit)

The half adder logic diagram is shown in Figure 2.1
= s
T o
7
1 -

Figure 2.1 Half adder logic diagram

34

The rules of binary addition (without carries) éine same as the truths of the
EXCLUSIVE OR (XOR) gate [9]. Circuit implementatioequires 2 outputs;
one to indicate the sum and another to indicatecttiey. Two digits (bits) at
the actual position and the carry from the previpasition should be added.
The process is then repeated. Tillkadder is a fundamental building block in
many arithmetic circuits, which adds three oneHamtary numbers (C, A, B)
having two one-bit binary output numbers, a sumaf®) a carry (C1).

C A B S C1

0+1+0 =1 0

0+1+1 =0 1 (to the next more significaitf b
1+1+0 =0 1 (to the next more significait} b
1+1+1 =1 1 (to the next more significaitf b

The full adder logic diagram is shown in Figure.2.2

T o— 5 |
D) s

Figure 2.2 Full adder logic diagram

The following is an example of binary addition:

1111 Carries

1001011, Aungend

+ 1100111, Addend
m sun

35

Binary Subtraction

In many cases binary subtraction is done in a ap&ay by binary addition.
One simple building block called adder can be imaeted and used for both
binary addition and subtraction. Using the borroetmod; the basic rules are
summarized in the next:

Borrow A B Difference

0 O - 0 =0

0 1 - 0 =1

0 1 -1 =20

0 0O - 1 = 1andborrow 1 from the nexire significant bit
1 0O - 0 = 1andborrow 1 from the nexdre significant bit
1 0O - 1 = 0andborrow 1 from the nexire significant bit
1 1 - 0 =0

1 1 - 1 = 1andborrow 1 from the nexitre significant bit

When a larger digit is to be subtracted from a #naligit it is necessary to
“borrow” from the next-higher-order digit positioffhe following example
illustrates binary subtraction:

010 Modification of minuend resulting from borrowing
A0f0.11, Minuend
- 111. 01, Subtrahend
ng Difference

Binary Multiplication

The rules for two-digit binary multiplication areet next:

A B Product

0 x 0 = 0

1 x 0 = 0

0 x 1 = 0

1 x 1 = 1 and no carry or borrow bits

36

The rules of binary multiplication are the samedtestruths of the AND gate
[9]. In a very similar way to the decimal multigdiiton an array of partial
products are formed and binary added. The followsngn example of binary
multiplication:

114 Multiplicand
x 10% Multiplier
111 Array of partial productl(x 111)
+ 000 Array of partial produc0Q x 111)
0111
+111 Array of partial product@O x 111)
10011 Product

Binary Division

Binary division is the repeated process of suhactjust as in decimal
division [9]. A trial quotient digit is selected édmultiplied by the divisor. The
product is subtracted from the dividend to deteemrihether the trial quotient
is correct. The principle of binary division is sdey the next example:
110101, Cuotient
Divizor 11,) 10100000, Diwidend
1
100
-11
10
-00
100
-11
0
00
100
-11
1 Eemainder

37

2.3 Signed Binary Numbers

The positive integers and the number zero can peesented as unsigned
binary numbers using an n-bit word. When workinghwany kind of digital
electronics in which numbers are being represenieds important to
distinguish both positive and negative binary nursbeThe three
representations of signed binary numbers will lszwbsed in the next. These
approaches involve using one of the digits of thely number to represent
the sign of the number [10

Sign-Magnitude Representation

To mark the positive and negative quantities irtefausing plus and minus
sign we will use two additional symbols 0 and 1. this approach the
information’s left bit (the most-significant bit, B) is the sign bit, where 0
denotes positive and 1 denotes negative valuer&3tef the bits represent the
number magnitude. This method is simple to implemand is useful for
floating point representation. The disadvantage sign-magnitude
representation is that the sign bit is independefht magnitude, and
mathematical operations are more difficult. It &rywimportant to not confuse
this representation with unsigned numbers! Tableilfustrates this concept,
including all three representations of signed hinarmbers using 4 bits. Here,
the MSB bit (sign bit) is separated from the rerrggr8 bits which denote the
magnitude in the binary number system. It can bedthat O has two different
representations, and can be both + 0 and — 0!

1's-Complement Representation

The simplest of these methods is called 1's cometgnmwhich can be derived

by just inverting all the bits in the number. Resreg the digits, by changing

all the bits that are 1 to 0 and all the bits #r&t O to 1 is called complementing
a number. The positive numbers 1’s complement sgpitation is the same as
in the sign-magnitude approachnd the 0 has again two different
representations. In this approach the MSB bit akows the sign of the

number (all of the negative values begin with aek Table 2.1).

38

2’'s-Complement Representation

The 2's complement number representation is mastramly used for signed
numbers on modern computers. An easier way to ctertpe 2's complement
of a binary integer is to consider the 1's completr# the number plus 1. The
8 bit representations of the integer numbérare:

Signed-Magnitude representation1/0001001

1's complement: 1]1110110

2’'s complement: 1/1110110
+ 1
1/1110111

For further examples using 4 bits see Table 2.1.

Signed decimal Sign-magnitude 1's complement camplement

equivalent representation representation sgoitation
+7 0 111 0 111 101
+6 0 110 0 110 100
+5 0 101 0 101 101
+4 0 100 0 100 100
+3 0 011 0 011 001
+2 0 010 0 010 0o
+1 0 001 0 001 001
0 0 000 0 000 000

1 000 1111

-1 1 001 1 110 111
-2 1 010 1101 110
-3 1 011 1 100 11
-4 1 100 1011 100
-5 1101 1 010 011
-6 1110 1 001 010
-7 1111 1 000 o1
-8 - - (0]}

Table 2.1 Three representations of signed binanylb@us using 4 bits

39

Addition with 2’s Complement Representation

If the complement representation of signed numiseused there is no need for
both adder and subtractor unit in a computer.

Let's assume two n-bit signed numbers M and N preed in signed 2's
complement format. The sum M + N can be obtainetuding their sign bits
to get the correct sum. A carry out of the signgdasition is discarded. In the
next, addition in the 2's complement representatiramples are given (using
5 bits).

(+7) 00111 (+7) 0 0111
+ 3 0 0101 + (-5 1 1011
(+12) 0 1100 (+2) 10 0010

T Carry discard

-7 1 1001 -7 1 1001

+ (+5) 0 0101 + (-5 1 1011
(-2 1 1110 (-12y 1)1 0100
(-2 2’5 complement Carry dizcard (-12) 2"s complement

If the sum of two n-bit numbers results in an n runber an overflow appears.
The first step in the detection of such an erradhesexamination of the sign of
the result. The overflow detection can be impleraénising either hardware or
software, and depends on the signed or unsignetheusystem used.

2.4 Binary Codes and Decimal Arithmetic

The binary number system, handling only two diginbols, is the simplest
system for a digital computer. From the user pofntiew it is easy to compute
and operate with decimal numbers. A combinationbwfary and decimal
approaches, keeping their advantages, result ystara in which the digits of
the decimal system are coded by groups of binagigsdiThe basic concept is
to convert decimal numbers to binary, to perforiraethmetic calculations in
binary, and then convert the binary result bacteoimal.

40

The best known scheme to code the decimal digitees3421 binary-coded-
decimal (8421 BCD) scheme. In thmeighted codel0 decimal digits are
represented by at least 4 binary digits. In 842 DBGde each bit is weighted
by 8, 4, 2 and 1 respectively. For example the 882D representation of the
decimal number 3581 is 0011 0101 1000 0001.

Beside 8421 BCD code other weighted codes have hsed. These codes
have fixed weights for different binary positiotishas been shown in [11] that
exist 17 different set of weights possible for asipeely weighted code:
(3,3,3,1), (4,2,2,1), (4,3,1,2), (5,2,1,1), (4,8)2(4,4,2,1), (5,2,2,1), (5,3,1,1),
(5,3,2,1), (5,4,2,1), (6,2,2,1), (6,3,1,1), (6,8)2(6,4,2,1), (7,3,2,1), (7,4,2,1),
(8,4,2,1). It is also possible to have a weightedecin which some of the
weights are negative, as in the 8, 4, -2, -1 cbaeva in Table 2.2.

Decimal 8421 Excess-3 2-out-of-5

digit binary code code code
0 0000 0011 11000
1 0001 0100 00011
2 0010 0101 00101
3 0011 0110 00110
4 0100 0111 01001
5 0101 1000 01010
6 0110 1001 01100
7 0111 1010 10001
8 1000 1011 10010
9 1001 1100 10100

Table 2.2 Binary codes for the decimal digits

This code has the useful property of being selfygementing: if a code word
is formed by complementing each bit individualihgaging 1's to 0's and vice
versa), then this new code word represents theddgplement of the digit to
which the original code word corresponds [12].

The non-weighted codes don’t have fixed weightgdifierent binary positions.
For example the excess-3 code is derived by addlig, = 3o to the 8421
BCD representation of each decimal digit. The 2afth code shown in Table
2.2 has the property that each code word has gxaail1's.

41

Decimal Addition Using 8421 BCD Code

The 8421 BCD code is widely used and it is simptifasBCD code Because
of the popularity of this code in the next the &iddi operation is presented.
Addition is performed by individually adding theroesponding digits of the
decimal numbers expressed in 4-bit binary groupsisg from right to left.
[13]. If the result of any addition exceeds nin®(1) then the number six
(0110) must be added to the sum to account fosithewvalid BCD codes that
are available with a 4-bit number.

Perform the following decimal additions (24 + 16)BCD code.

24 0010 0100 {24 in BCD)
+15 +0001 0101 (151 BCI)
39 0011 1001 (Mo carry, no illegal code)

When considering the two decimal numbers 26 andtZan be observed that
the sum 6 + 7 =13 > 9 and a correction is necgssaskip over the six illegal
combinations (by adding a correction factor gf 6011Q). Thus, we have

26 o010 0110

+ 37 +0011 0111

0101 1101

Correction + 0000 0110
=Sum 63 0110 0011

Consider the following addition: 28 + 59. When then of the LSB digits of
the two numbers (8 + 9) is greater than 15 it isessary to introduce a
correction. In this approach a correct code gragults but with an incorrect
sum.

carry
28 Qo1o 1000
+ 58 + 0101 1001
1000 0001
Cotrection + 0000 0110
S A 1000 0111

42

7-Segment Code

A very useful decimal code is theésegment codewhich is able to show
numeric info on seven-segment displays. The 7-sagmisplay (see Figure
2.3) consist of 7 LEDs (light emitting diodes), kame controlled by an input
where 1 means “on”, 0 means “off”. The decimal dagid the corresponding
7-segment code are shown in Table 2.3.

Decimal Digit T-Segment Code
a a b c d e f g
0 11 1 1 1 10
1 01 1 0 0 00
f b 2 1 1 0 1 1 01
3 11 1 1 0 01
g 4 01 1 0 0 11
5 10 1 1 0 11
6 10 1 1 1 11
e C 7 111 0 0 00
d g 111 1 1 11
9 11 1 1 0 11
Figure 2.3 7-segment display Table 2.3 Decimal digit and the corresponding
7-segment code
Gray Code

The most usefulinit distance codeis theGray codewhich is shown in Table
2.4. This unweighted code has such a sequenceailyaadjacent code words
differ only in one bit (see subsection 1.4 Thredariable Karnaugh Maps).
The attractive feature of this code is the simpfiodf the algorithm for
translating from the binary number system into@may code. [12]

_ Binary Gray
Decimal b2 bl b0 gz gl g0
3 0 0 0 0 0 0
1 0 01 00 1
5 001 0 011
3 0011 0 10
4 1 0 0 1 10
5 101 111
6 110 10 1
7 11 1 1 0 0

Table 2.4 The 3 bit Gray code
43

This algorithm is described by the expressions:
g0=b00b1

gl=bl0b2
g2=b2

Unit-distance codes, which could minimize errorge ased in devices for
converting analog or continuous signals such atages$ or shift rotations into
binary numbers which represent the magnitude ofstgpeal. Such a device is
called an analog-digital converter [12].

Error Detection

In general data transfer between various parts @bmputer system, the
transmission over communication channels or theirage in memory is not
completely error free. For the purpose of increggpstem reliability, special
features are included in many digital systems, t®@.introduce some
redundancy in encoding the information handledhi $ystem. For example,
the error detecting properties of the 2-out-of-Sleeas based on its feature to
have exactly two 1's within a code group. Not aldes have error detecting
capability.

A simple error detecting method is the calculus pfrity bit, which is then
appended to original data. The parity type couldewven or odd. The parity bit
is added to each code word so as to make the motaber of 1's in the
resultant string even or odd. [14].

For example, when the parity type is even, theltésan even number of 1's
100 0106-0 100 0100

110 0106~1 100 0100

In data transmission, the sender adds the patityrt@ssage bit) to the existing
data bits before forwarding it which is comparedhe expected parity (check
bit) calculated from the receiver.

Generating even parity bit is just an XOR functidn. a similar way,
generating odd parity bit is just an XNOR function.

To minimize the disadvantages of tlsisigle error detection method (cannot
determine which bit position has a problem) thdofeing rules have to be
observed. The necessary and sufficient conditionarfly set of binary words
to be a single-error-correcting code is that theimum distance between any
pair of words be three [12]

44

In general, if the Hamming distance is D (see stiime 1.4), Hamming
Distance is equal to the number of bit positionsvinch 2 code words differ),
[14] to detect k-single bit error, minimum Hammidigtance is

D(min)=k+1

The Hamming Code is a type of Error Correcting C@a€C) which adopts
parity concept, having more than one parity bigviding error detection and
correction mechanism. To correct k errors D (mir2k=t+ 1 is required.

Alphanumeric Codes

Several codes have been proposed to represent iocumé&rmation and
various characters. The nonnumeric ones are calfgthnumeric codes The
characters are for example: alphabet letters, apegimbols, punctuation
marks, special control operations. The commonlydusghanumeric code is
the American Standard Code for Information Interngea (ASCII). The 7-bit
version of this code is frequently completed withegghth bit, the parity bit.
Another encodingJnicodeis a computing industry standard for the conststen
encoding [15]. It can be implemented by so calléldFi8, UTF-16 character
encodings. For example UTF-8 uses one byte forA8@Il characters, and up
to four bytes for other characters.

2.5 Functional Blocks

The traditional process of logic synthesis is basedhe application of logic
gates. Its more modern variant makes the use adngpasition of smaller,
simpler circuits and programmable logic deviceswEwer in many cases it is
more advantageous to use a logic synthesis proeddised on the application
of logic functional blocks.

In this subsection we will give an overview of sommportant and useful basic
combinational functional blocks. In order to desigew circuits, design
hierarchy, the so called Top-Down, Bottom-Up, Méeetthe Middle Design
Approaches or Computer-Aided Design (CAD) toolslddae used [16].

Code Converter

A code converter is an important application of bamtional networks (see
subsection 1.5). Such a digital system is ableranstorm information from
one code to another. For example a BCD-to-Excessd@ converter is useful

45

in digital arithmetic [16]. To understand the ,mawhlanguage” a set of code
conversions has to be applied. Figure 2.4 showsssilple application, where a
signal in Gray code transmitted by a position sensaeceived by a Gray-
Binary converter (a typical application for Graydeois in absolute position
sensing) and the result is converted in normal 134D code. At the end,
the display unit applies BCD to 7-segment code egsion. In this way the
output can be easy evaluated.

Gray Bi
FPosition senzor :> Sty I 1naryN-BCD

Figure 2.4 Code conversions

Code converters are typically multiple input-mukipoutput combinational
circuits. They can be realized by appropropriates geetworks or using Read
only Memories.

Binary Decoders

A combinational circuit that converts binary infation from n coded inputs
to a maximum 2coded outputs is called n-t§d@ecoder, more generally n-to-
m decoder, nx 2" [17]. Figure 2.5 shows a binary decoder as a kbaok

]

LS g,

—_—

0
Xy ———f
n-to-28 7,
Xy ?

DECODEER

MSB) e s v

X

Figure 2.5 Binary decoder as a black box

Enable input (E): it must be on (active) for theader to function, otherwise
its outputs assume a single "disabled” output ceds.

46

2-to-4 Decoder
In a 2-to 4 decoder, 2 inputs, A0, Al are decoded P = 4 outputs, DO
through D3. Each output represents one of the mm#eof the 2 input

variables. The truth table and the logic circuithout Enable input are given in
Figure 2.6.

A0
D\: DO=ATAD
a1
41 40| D0 DI D2 D3
1 0 0 0 _
: Dl=4140
L D2=AlA0
a)
: D3= 4140

)

Figure 2.6 2-to-4 line decoder without Enable;rajtt table, b) gate level logic diagram

(RN
- o = o
o o o
o o =
o o= o
- o o

Decoder output lines implement minterm functionayAombinational circuit
can be constructed using decoders and OR gatesI[i&]2-to-4 decoder truth
table and the logic circuit with Enable input areeg in Figure 2.7. In this case
the additional gate level produces time delay, Witan be avoided by using 3
input AND gates instead of 2 input AND gates inl¥&2.6 b.

E

A0 DC
E Al A0 [Do D1 D2 D3
A1 D

—| Do

D

=
- = o o
-
o oo o
o o = oo

0
0
]
1
0

- o o oo

L
I

a)

D3

bl

Figure 2.7 2-to-4 line decoder with Enable a) ttathie; b) gate level logic diagram
47

Decoder expansion means to construct larger desddmn small ones. The
next example (see Figure 2.8) shows the intercdiomecf two 2-to-4
decoders in order to have the required 3-to-8 decsite. If A2 = 0: enables
top decoder, when A2 = 1: enables bottom decoder.

Ao Il>°

2-to—4
Decoder
0 Dy
20 1 D,
2! 2 D,
3 [
Enable
5—1054
ecoder
0 Dy
20 1 F—D:
AL 2 Dy
3 D,
Enable

Figure 2.8 3-to-8 decoder from 2-to-4 decoders

Binary Encoders

An encoder is a multi-input combinational logic ctiit that executes the
inverse operation of a decoder. In general, it Hamput lines and routput
lines. The output lines generate the binary eqamnabf the input line whose
value is 1 [19]. Figure 2.9 shows a binary encadea black box.

’

Ky —
) —

X

—»

-1
X

22-INPUT
EOTARY
ENCODER

,

Figure 2.9 Binary encoder as a black box

48

If the enable signal E =tben all outputs are €se Y = F (Xo, X1,...,X2"1),
] = 0...n-1. If the valid signal is equal to 1 (V1F the valid code is present at
the outputs; otherwise V = 0.

4-t0-2 Encoder

Using a 4-to-2 encoder, 4 inputs, DO - D3 are eadddto 2 outputs, A0 and
Al. The truth table and the logic circuit withouhdble input are given in
Figure 2.10.

Al =D3+D2
A0 =D3+D1
V = D3D2D1D0 + D3D2D1D0 + D3D2D1D0 + DIAD1DO
D3 D2 D1 DojAl AD|V
oo o 1 (0 01
oo 1 0 (0 1|1
o1 (I VI A | o1
1 0o 0o 0 (1 1|1
x ¥ = % |z = (|0

Al

A0

Bis[sulvls

Figure 2.10 4-to-2 line encoder without Enablehtriaible and gate level logic diagram

49

Priority Encoders

Multiple asserted inputs are permitted; and onephasity over all others.

A valid output indicator, designated by V, is set to 1 only when one oranor
inputs are equal to 1. V = D3+ D2+ D1+ DO by ingpmt Figure 2.11 shows
the truth table and the corresponding logic cird@@] of a 4-to-2 priority
encoder

Inputs Cutputs
D3 D2 Dl Do Al AD W

o o ooo
o o ocoo
o o ooo
o o ooo
W e
o e
o o ocoo

D3

Al
D2 D:
D1

Do]

Figure 2.11 Priory encoder truth table and logicwit

50

Multiplexer (MUX)

Multiplexers work as selectors, which choose ommiirio pass through to the
output. A 2 x 1 multiplexer has two data inputs &ifd 11), one select input S
and one data output (D). Figure 2.12 a) showsnternal structure of a two
input MUX. At the output of the simple AND - OR cbmational circuit if S =
0, appears the 10 value, and if S = 1, I11's inplte passes through.

In general, an M x 1multiplexer has M data inplagp (M) select inputs, and
one output. Using another notation, if M £ #he 2-to-1 multiplexer works
with 2" data inputs, n select inputs and one output.

1-to-2 2x 2 AND-OFR SELECTICH CIRCUIT
LECODER

0 D

I1

Figure 2.12 2-to-1 multiplexer
N-bit M x | Multiplexer

In many applications multiplexers are often usegass through N-bit data
items [20]. For example, if the inputs A and B dehsf four-four bits (a3, a2,
al, a0, and b3, b2, b1, b0 respectively) we needZox 1 MUXes (called 4-bit
2 x 1 MUX) to multiplex the inputs to four-bit owtpC (denoted by c3, c2, c1,
c0). Figure 2.13 shows the internal design using ® x 1 MUXes and the
corresponding block diagram. The 2 x 1 multiplexaes connected to the same
select input.

Any Boolean function of n variables can be impletednusing a 2to-1
multiplexer [16].

51

a3 2zl
0

b3 DL
__In
g
32 2X1
10 4-bit
b2 Dir— 4 2% 1
S A7L 0
4
3 D 740
4
|] B 7L 8|
2x1
1 3
L
> |
bl |
g
g
2xl
0
ndi
DL
b0 |
g
5 |
a b}

Figure 2.13 4-bit 2 x 1 MUX a) internal design;idck diagram

Demultiplexer

The demultiplexer is basically a decoder, whichfqrens the inverse of a
multiplexing operation. In general, a 1-tb-@multiplexer has one data input,
which is transmitted to one of thé Rossible output lines. The selection of the
proper output depends on theelect lines.

Comparators
A comparator is used to compare binary numbersderdo indicate if they are
equal or if one is greater then other. A compargtoised in applications where

some varying signal level is compared to a fixedele(usually a voltage
reference) [21].

52

Equality (Identity) Comparator

In general, a combinational circuit able to compare n-bit inputs generating
a 1 or a 0 at its output, depending on whetheirthets are the same or not, is
called an equality comparator. Comparator desigst fitep is to write the
combinational circuit truth table from which thos#tuations (lines) are
selected where all the input bits are equal. The step is the comparator
output function minimalization which is complicatémt more than 4-bit input
binary numbers. A simpler design can be obtaineckbglling the XNOR gate
(see subsection 1.5) property whose output iscsét if the gate’s two input
bits are equal. For example, a 4-bit equality camajea is composed from four
XNOR gates, and each unit detects if the correspgndits are equal.
Denoting the two 4-bit inputs by A = a3a2ala0 and= Bb3b2bl1b0, the
comparator output will indicate equality (logic-alue) if A=B (a3 = b3, a2 =
b2, al = bl, a0 = b0). Figure 2.14 shows a 4-hiakty comparator internal
design, and its block symbol [20].

a3 a2 al al b3 b2 bl b0
4-BIT EQUALITY COMPARATOR

E

b)

E

a)
Figure 2.14 4-bit equality comparator internal gasiand its block symbol

Magnitude Comparator- Carry-Ripple Style

An N-bit magnitude comparator is a combinationatwit able to compare two
N-bit binary numbers A and B, and indicates if BB>A =B, or A< B. In
general, the comparison of two binary numbersstasin checking their MSB
bit (most significant bit, section 2.1) values ¢olled by comparing the
remaining bits down to the LSB (least significait} bit pairs.

As long as bit pairs are equal we need to compaenext lower bit pair [20].
The bit pair is differentifai=1 and bi=0 (ea8 >B)orai=0and bi =1

53

(case A < B). Figure 2.15 illustrates a 4-bit magieé comparator with
identical units in each stage and its block symbsing the notations:

G (is 1 when A > B)

E (is 1 if two numbers are equal) and

L (is 1 when A <B).

16 A=B
i G oa b o G mG o2 b oy G MG a b oo (MG a2 b oamGg
1E - ~ | a=B
—» m E out B [0 E out E [*in E ot E [TinE st E [

IL - -
= A<B
—» L ot L L out_ L —» in_L out I [*in_L ot L >
Stage 3 Stage 2 Stage 1 Stage 0
&)
a3 a2 al a0 b3 b2 bl b0 [AFE
0 —»
LG 4 BITMAGNITUDE COMPARATOR A=B
1 - >
— I E
A=B
0, IL —y

Figure 2.15 4-bit magnitude comparator a) intedsign; b) block symbol

Problems

2.1 Convert the following binary numbers to decimalctal and
hexadecimal:

a) 11001100 b) 100000011 c) 11100011
2.2 Perform the following operations in the binaymber system

a) 110011.11 +1101.1 b) 110011.11 - 1101.1
c)101.1x 111 d) 100100: 110

2.3 Perform the following addition and subtractiof signed binary
numbers in the 2's complement number representation
a) 10001111 + 101101 b) 11101111 — 101000

2.4 Express the following signed decimal numbersigised 8-bit binary
numbers in sign-magnitude, 1's-complement, anct@mplement
representations

a) +33 b) +125 c) -48 d)-113

54

2.5 Give the coded representation of the decimaibars 346 and 418 in
8421 BCD code and perform the 346 + 418 operatid®GD code.

2.6 Calculate the odd parity bit of the followirtgsgs
a) 1110001 b) 101010 c) 011100 d) 1111100

2.7 Design a 4 x 2 encoder using AND, OR, and NOT gate
2.8 Design a 8 x 3 encoder using AND, OR, and NOT gate
2.9 Design a 4 x 2 priority encoder using AND, OR, &@T gate

2.10 Design a 3 x 8 decoder with and without enableq#hD, OR, and
NOT gates

2.11 Design a 4 x 16 decoder using AND, OR, and NOT gate
2.12 Design a 8 x 1 multiplexer using AND, OR, and NGilieg
2.13 Design a 16 x 1 multiplexer using AND, OR, and NOT
2.14 Design a 4-bit 4 x 1 multiplexer using 4 x 1 mukigers
2.15 Design a 1 x 4 demultiplexer using AND, OR, and Ngaife
2.16 Design a 1 x 8 demultiplexer using AND, OR, and Ngaife
2.17 Design a BCD to 7-segment code converter

2.18 Design a decimal to Excess-3 code converter

2.19 Design a decimal to 2-out-of-5 code converter

2.20 Design a BCD to Excess-3 code converter

55

Chapter 3

Logic Circuits and Components

3.1 Digital Electronic Circuits

Logic circuits can be implemented using differengitdl electronic logic
circuit families, each of which has its own advaes and disadvantages.
Usually a system is built with circuits which betpfrom a selected single
family, and the logic gates in this family are udedrealize all the logical
operations. The combination of various logic citdamilies results in a hybrid
approach. In this approach it is very importanttdke note of the systems
compatibility, and interfacing circuits may be régd. The choice of family to
be used depends on availability of different lofyinctions, switching speed,
power drain, signal voltage level, cost, noise imityy power dissipation,
circuits’ density, flexibility, and other charaatics. In many cases the main
goal is to design a circuit for the highest speesdsyble in order to minimize
calculation time.

Digital systems are built up from digital circuitBigital logic circuits are
implemented using transistors and interconnectiormplex semiconductor
devices called integrated circuits (IC). An IC isikcon semiconductor crystal
(chip) that contains a network of transistors. The numbg transistors
determines the integration level [16]:

- Small-scale Integration (SSl);several transistors (< 40) per chip

- Medium-scale Integration (MSI); between 40 - 400 transistors per chip
Perform basic digital functions, e.g., 4-bit aduiiti multiplication, etc.

- Large-scale Integration (LSI); between 400 and a few thousands of
transistors per chip. Implement digital systemg, small (micro-) processors
and memories. For example, Intel i4004 has ca. 230Bistors.

- Very Large-scale Integration (VLSI); Several thousands to over 1 billion
transistors per chip, implements complex digitaktesns, e.g., complex
microprocessors, multi-processor systems on-chiq,For example, Intel i7-
4770k has ca. 1.5 billion transistors.

56

In the next we will give an overview of the mostpptar logic families,
transistor-transistor logic (TTL) and complementtt®S (CMOS). The
CMOS logic family is the slowest of the three lotamilies but also dissipates
significantly less power then the medium-speed ligriiTL, or the high-speed
family ECL [22]. Nowadays, High-Speed CMOS and Adved CMOS Logic
(AHC and AHCT) products, with low-power consumpti@3] are also used.

Transistor-Transistor Logic (TTL)

Transistor-Transistor Logic (TTL) is a very prommédogic family. Its name
refers to the use of bipolar transistors throughbetcircuit.

Inverter (NOT Gate)
The inverter is available in each of the logic fiesi A possible

implementation is shown in Figure 3.1, where thgolar transistor, connected
in the common-emitter configuration serves as aprier.

Voo Vo 4
Logic 1 {
. K
Vom 1
|
Ry Vo optidden)
& 1 !
Vi Voo :
. e P et TP L
Logic 0 { ' |
! ! -
= - vI

Logic0 Vi Vg Logicl

Figure 3.1 The transistor inverter and the inpupaticharacteristics

The inverter specifications typically include thatage levels [24]:

V4 minimum gate input voltage which will reliably logcognized as logic 1
V\L.: maximum gate input voltage which will reliably bgcognized as logic 0
Von: minimum voltage at gate output when output igic 1 (HIGH)

VoL maximum voltage at gate output when output isgit 0 (LOW)

57

TTL NAND gate

A possible design for a TTL NAND gate is shown igufe 3.2 [24]. The logic
values 0 and 1 are represented by the nominalgel@aV and + 5 V. The
multi-emitter transistor input numbers can be iasesl.

+5¥

]

Output

Inpat B ™

Figure 3.2 TTL NAND gate with resistor pull-up
CMOS Logic

The basic CMOS gates are considerably slower tad TL gates but because
of the simplicity of their geometry and very smphysical size, they can be
packed densely on a silicon chip [22].

Basic CMOS Gates

CMOS technology implements physically digital logiccuits using NAND,
NOR, and NOT gates [22]. The CMOS inverter built dmm an
interconnection of pMOS and nMOS transistors maydesidered as a basic
switch circuit. Figure 3.3 presents the generalcstire of a CMOS circuit
where the pMOS transistors have to be connecteévVie and the nMOS
transistors to GND.

The circuit of the two-input NOR and NAND gateslso shown. For example,
the NAND gate consists of two series-connected anobl driver transistors
and two parallel-connected p-channel load transsto

58

In manufacturer's specifications the basic techgglo parameters
characterizing digital logic gates are listed [22]:
- Fan-in: indicating the number of gate inputs @lguup to 4 or 5).

Logie 1 | +Vop

[| Fusing From 51 —7—

i

:

! |

p-type i i
transistors —l—‘{: i
i

]

i

]

]

]

|

x1

x2 F using A
ti-type
transistors J—

Logic 0 l From G2 1

a) General structuze B HOR cIHAND I HOT

Figure 3.3 CMOS general structure and basic CMQ8&sga

- Fan-out: indicating the number of standard loadgate’s output can drive
without reducing gate performance.

- Size: area on the silicon crystal occupied by lthyeout cell for the circuit
corresponding to the gate. The area is proportimngde size of a transistor.

- Noise margin: absolute worst-case condition, ttuies the guaranteed
margins against signal undershoot and power ofrthkedisturbances

- Power dissipation: power consumed by the gateifdissd as heat)

- Logic voltage levels: important because the THd £MOS families input
and output levels differ

- Propagation delay: time required for an inpuitdigsignal to be noticed at an
output line.

]

Comparison of Logic Families

Transistor-transistor logic (TTL) based on bipolar transistors is one of the
most widely used families for small- and mediumlsadevices, and rarely
used for VLSI. This family typically operates froBV supply and has very
good noise immunity. It is quite fast, especiafiythe Schottky version.

59

Emitter-coupled logic (ECL) based on bipolar transistors, removes storage
time problems by keeping the transistors from sditom. ECL is by far, the
fastest logic, but with low noise immunity.

Complementary metal oxide semiconductor (CMOS)s the most widely
used family for large-scale devices. It combineghhépeed with low power
consumption. Usually operates from a single supply - 15 V, has excellent
noise immunity and can be connected to a large eumibgates [25].

3.2 Sequential Logic Networks

In many applications the use of combinational Gtecis not sufficient. Logic
networks whose outputs depend not only on the hchoput signal
combination, but on the actual state of the netwestablished previously is
called sequential logic network. The network inpeariables are called
primary variables, and the output variables which are fed ba#gondary
variables. The sequential circuits, in contrast to the comimal ones,
have 'memory”. A sequential logic network, as acklaox, is shown in Figure
3.4.

- Inputs 1 m m- Outputs

+'

—

Combinational
Circuit q

q

. Storage
Elements

Mext state Preszent state

Feed-back loop

Figure 3.4 Sequential logic network

Sequential circuits can be classified into two gsul. Asynchronous
sequential circuits (no clock signal), 2. Synchmosequential circuits
(operating with synchronizing/clock signal).
In the asynchronous sequential circuitsthe inherent time delay in the
feedback loop will ensure the ,memory” property e&sary to generate the
secondary variables. In this case the logic statesitions occur at different
times, i.e. asynchronously.
In synchronous sequential circuitsthe operations are synchronized. This is
the function of clock, which provides a series aofisgs with precise pulse
width and repetition rate. A synchronous sequemir@uit, a clocked system,
uses a clock to decide when to update the statieeotircuit. Most sequential
circuits are edge triggered: they change theiestateither the rising or falling
edge of the pulse. A transition from one statehtdther occurs only at fixed
60

time intervals dictated by the clock pulse, givsygnchronous operation. An
idealized clock waveform is shown is Figure 3.5.

Leading (positiv) edge Eriable

gy

Trailing (negative) edge Dizahle

Figure 3.5 Clock waveform

One-bit storage element is able to hold a singleObor 1, to read the saved bit
and to change its value. In sequential circuits dtozage elements are: flip-
flops and latches.

The flip-flop, as the basic memory element in sequential cgcist itself a
sequential circuit having two states. The one-bitagje device has several
inputs (X), an output (Q), and a specific triggaput (clock - CLK). The
output value depends on the response of a pulde dtigger input CLK (on
therising or falling edge of the pulse). When a pulse is absent at input @K
output remains unchanged (storage mode). Thel@jptivo states correspond
to logic-0 or logic-1 stored in the flip-flop. THigp-flop is setwhen the output
has logic-1 value, and the flip-flopliessetwhen the output has logic-0 value.
A latch is a one-bit storage device with several inputsdXd an output (Q).
The output value is a function of the inputs Q £X) only when specific
combinations occur at the inputs X; otherwise thguot remains unchanged
(storage mode). A latch can change state if theemactive level on the CLK
input. Their content changes immediately when timgiuts change.

Nowadays, most of the circuits are synchronousesaipl circuits because the
applications need predictable simple design andysisa An asynchronous
circuit is preferred over a synchronous circuit whegh speed of operation is
required. Asynchronous sequential circuits respandediately whenever
there is change in any input variable without hguio wait for a clock pulse.
The asynchronous sequential circuits cost lessring of the number of gates
than the synchronous circuits, and therefore, fwwsnemical reasons, they
could find useful applications [16].

In the next we will give an overview of the mostpaantant flip-flop and latch
types, and their implementation in the variousddgmilies. The behaviour of

61

a particular flip-flop type will be described byuth/characteristic table and
characteristic equation, which gives the next outipputerms of the input
control signals and the current output.

3.3 Flip-Flops
The SR Latch and Flip-Flop

The SR type is one of the simplest storage elem@msable multivibrator)
with two inputs S and R, which force the unit tctmme set and reset, and two

outputs Q and). The value of the next state Q (t + 1) dependwhervalues of

the two present inputs S (set) and R (reset), antldrmore from the value of
the present state Q (t). Figure 3.6 shows the sigifcSR latch and flip-flop

used in logic circuits. The black boxes clocked kgha clearly distinguish the
above mentioned two types, indicating that thehlatclevel-triggered (a, b)

and the flip-flop is edge-triggered (c, d). Withabie small triangle, the circuit
is a latch. As in the case of logic gates, a bulidécates the negation of a
logic value. For latches a bubble in the clock lmdicates that the clocked unit
is enabled when the clock line is at logic-0, iastef logic-1.

A flip-flop can change state only during a trarsitiof the trigger input Clk.

For example a rising-edge triggered flip-flop camge its state only during O-
to-1 transition on clock pulse [26].

—s —s —s —s
QI QI Qr— Qo
— Clc Clk Clkc Clk
aQ aQ Q
_Ir R R E

a)

k)

c)

4

Figure 3.6 Symbols for SR latches and flip-flops

Figure 3.6 a) shows the standard symbol for logictive level SR latch (latch
can change state if Clk = logic-1). The standardlsyl for logic-0 active level
SR latch is illustrated in Figure 3.6 b). The syimbeed for rising-edge
triggered SR flip-flop (flip-flop can change staialy during O-to-1 transition
on CIk) is shown in Figure 3.6 c¢). Finally, Figu3e5 d) illustrates a falling-
edge triggered SR flip-flop (flip-flop can changtats only during 1-to-O

62

transition on CIk). The SR latch function and closeastic table, a relationship
which exists between the inputs, outputs, prestates and next states is
described by Table 3.1. If the clock line is seldgic-1, the state of the SR
latch becomes logic-0 when logic-0 is placed onuRrot S, and the state of
the SR latch becomes logic-1 when logic-1 is plame® but not R. No change
in state occurs when S = R = 0, and the SR lattlaeur is not defined for

the S = R =1 values.

Function table Characteristic table

Cle | 3(ty Rty Q) Qi+1) Operation | 2@ B Qi Q1)
1] 0 0 0 0 Mo change | 0 0 0 0
110 0 1 1 0 0 1 1
1] 0 1 0] Eeset] 1] 0
110 1 1 0 0 1 1 0
111] 0 1 Set 1] 0] 1
111] 1 1 1] 1 1
111 1] * Tndefined | 1 1] X
111 1 1 X 1 1 1 X
0| X X X Q) Mo change

Table 3.1 Behaviour of an SR latch

In the SR flip-flop function table instead of ClkXappears the rising clock
edge (1), and Clk = 0 is substituted by the falling cloeklge (|). The
characteristic table is the same. The SR latch fipeflop characteristic
equation is derived from the characteristic talbleeir expression is obtained
by using a three variable Karnaugh-map (notatiamsespond to Figure 1.6 c)
for the inputs S(t), R(t) and Q(t), see Figure 3.7.

kit

00 1 1 X X

Ql
Figure 3.7 S(t), R(t) and Q(t), variable Karnaugapm

63

From the above Karnaugh-map we can deduce theatbastic equation of a
SR latch or flip-flop:Q(t+1) = S(t) + R(t) Q(t
The so called excitation table is similar to thethrtable, showing the input

variable states that are necessary to generatetiaupsr next state when the

current state is known. SR latch and flip-flop ki@s same excitation table, see
Table 3.2.

Qi) QL | 5 Rt

X

[l QS R

—_ o O
—_ e

0
1
X 0

Table 3.2 SR latch and flip-flop excitation table

The SR latch and flip-flop can also be represergegphically by a state
diagram, derived from the excitation table. In @tate diagram a state is
represented by a circle, and the transition betweem is indicated by arrows,

representing the path between different circles.|&€h and flip-flop has the
same state diagram, see Figure 3.8.

= E=03

s ER=3X0

Figure 3.8 SR latch and flip-flop state diagram

Starting from the characteristic equati@t+1) = S(t) +?(t) Q(t, from a

simple AND-OR gate implementation, making thensformations according to
DeMorgan’s law and rearranging/redrawing the cir¢see Figures 3.9 a and
b), we deduce the corresponding two level NANDddtrte (see Figure 3.9 c).

64

This is the so calle® R latch design. By using NOR gates instead of NANDs
we get the S R latch structure (Figure 3.9 d).

QD)

K 3
Qi

a)
Qm
.)
c) d)

Figure 3.9S R and S R latch design using logic gates
In this approach SR latch is a simpgnchronous sequential circuit, built up

from gates with feedback loops. This type can easa basic unit in every
synchronous and asynchronous sequential circuit.

65

Clocked Latch and Flip-Flop

The latches and flip-flops often used for implenmegsynchronous sequential
circuits have a clock input. A clocked SR latch or flipgloan be performed
from a simple structure NAND (Figure 3.8 c) by audgdiwo more NAND gates

as shown in Figure 3.10. The additional gates @eetheé andR signals,
based on inputs S and R and CIk. In case of SR thte Clk input works as a
control input which acts just like an enable.

5 —
5
Q

Clle

Figure 3.10 Clocked SR Latch

<|

The latch is level triggered and is called “tranep#’ because any change on
the inputs is seen at the outputs immediately. Tpisperty causes
synchronization problems and this unit is not reswmnded for use in
synchronous design. In the applications varioysffops are used which are
created using latches. The flip-flop output respomdhe inputs on specific
times, the rising or falling edge of a clock signal

JK, D and T Flip-Flops

In this section we will study the JK (Jack Kilby), (data) and T (toggle) flip-
flops (omitting the JK and T latches), emphasizihg popular D flip-flop
design using latches. In general, the latches &pefldps have the same
characteristic table, characteristic equation,taton table, and state diagram.
The rising-edge triggered flip-flops standard sytalare presented in Figure
3.11. The JK flip-flop is a generalized form of tBR flip-flop. The J input has
the set function, and the K the reset one. WhenKl =1 at the Q output
appears the complemented value of the present state

The D flip-flop has the simplest relationship betweits next state and the
input line. Its function is to copy the data on thénput to the Q output line at
the next clock pulse. The signal is delayed by #ane clock period.

66

Qr— Q Qr—

- QP —ba QP —

©|
I

a) b) D
Figure 3.11 Standard symbols for JK, D and T flgpé

If T flip-flop input line has logic-1 value, the kee of the next state becomes
the complement of the previous state; otherwisestdge remains unchanged.

Table 3.3 summarizes the above mentioned thredldigs truth/characteristic
tables.

o KO Qb e D) QW Qe+l T Qi | Qe+

Mo change Mo change

Reset Complement

—_— oo
_ T =
—_—_— O
—_— O

0
1
1
0

[R

Set

U o S o S e i o
—_ OO O T
—_ T D D e O

0
1
0
0
1
1
1
0

Complement

a) b) &)
Table 3.3 JK, D and T flip-flops truth table

The various flip-flops characteristic equation che derived from the
corresponding three and two-variable Karnaugh ngap&tions correspond to
Figure 1.6 c) shown in Figure 3.12.. The map cellow the flip-flop truth
tables.

B Q) Q)

D)
Tt 1 1 1

BN

a) b) c)

lu]

Figure 3.12 JK, D and T flip-flops Karnaugh maps

67

The JK, D andﬂlip-ﬂﬁJs characteristic equatia@me:
Q, (t+1) = J(1) Q) + K(t) Q(t

Q, (t+1) = D(t)

Q, (t+1) = T(HU Q(t)

From the JK, D and T flip-flops truth table we cdeaduce their excitation
tables and state diagrams, as shown in Figure 3.13.

TLE=0X
QB QD | JE) K@
0 0 0 X
01 1 X
1 0 X1
11 X0
a)
Q) Q1) | D
00 0
0 1 1
10 0
11 1
b)
T=0
QL QL | T T=1

— = T
— D=
o =

c)
Figure 3.13 JK, D and T flip-flops excitation talaled state diagram
68

Asynchronous Set/Reset Flip-Flops

In many applications there is a need for asynchusiyoSR, JK, D or T flip-

flops. These units have two additional inputs as:
- asynchronous set (S) is called direct set ord®res
- asynchronous reset (R) is called direct resé&llear

The clock pulse controls all inputs excepting S &ydwhich have logic-0

active level. The standard graphics symbols are/sho Figure 3.14.

)

— 1=

—> Cl

— 11k

3

E

l

I

al

1I

Cli

1K

3

E

Q

Q

|

L

b)

1D

Cli

3

E

Q

Q

1T

Clke

3

j==)

e

I

c)

)

Figure 3.14 Examples of standard graphics symbols

The characteristic table, characteristic equatiexcitation table, and state
diagram are the same as for the normal flip-flops.

SR Flip-Flop Design using Latches, Master-Slave Flip-lep

In many applications it is necessary to observeflipeflop state while in
parallel a new state is entered. In this case e fiip-flop state may be
logically dependent on itself. To avoid the podgipiof an oscillation which
could be caused by the flip-flop continuously stetanging during the period
in which the clock is equal to logic-1, it is usefa introduce an intermediate
network. As an example, consider an SR flip-floingdatches as shown in
Figure 3.15. The new structure, called Master-Siav@mposed of two main
units, called master, which is an SR latch, andeslanother SR latch. Because
of the particular interconnection the SR flip-fleptlock input enables either
the first or the second SR latch, but not both. &le when Clk = 0, the
master SR latch is enabled. The structure preseattesle is a rising edge-
triggered flip-flop. The output Q depends on thp-flop input value that was
present right at the rising edge of the clock dighke SR latches, SR flip-
flops are useful in control applications.

69

g | Q
; 2 Q 3 —— — 5 Qo
Cle | <
! DG Clk — Clk : —> Cl
I P —
R | — —_ e —
l R Qp R Q P —F Qe
| Master Slave i

Figure 3.15 An SR master-slave flip-flop

3.4 Registers and Counters

One of the most important sequential circuit useddigital system is the
register. Its main role is to store and/or shift the indata (bits). A register is
built up from flip-flops connected in cascade.

This unit allows serial and/or parallel shift irdo out of the register, and right
or left data movement. An N-bit register requireliptflops. The registers are
typically built up from D flip-flops. Figure 3.16hsws a basic 4-bit serial-in,
parallel-out, right shift register logic diagramdaits waveforms. In order to
illustrate its operation we consider the data wbdd1 as the input (waveform
is illustrated in Figure 3.16 b) [22]. The registerinitially cleared, att = 0
QO - Q3 outputs are all 0. At t = 1, on the positedge of the clock pulse
(CP1) the first bit appears at the output Q0. &tskcond clock pulse, the bit at
QO is transferred to Q1 while the next data bitesgpp at QO, based on D flip-
flop truth table (see subsection 3.3). Next clodkse causes the bit at Q1 to
appear at Q2, the bit at QO to appear at Q1 amehso

Q0 Q1 Q2 Q3

Data ‘

fmpat | DO Q0 ——1 DI Q1 — Do Q2 D3 Q3

Clke Clk Clke Clic

Clock

a)
70

Clock T

b b
1 1 -1 [r— — .
Data 1§LSB 1 0 1 MSB k
i v v t

Q1

Q2

e U w k
T
T

Q3 t

b}
Figure 3.16 4-bit shift register a) logic diagramwaveforms

Counters

An N-bit counter is an extended N-bit register able to incremerdemrement
its own value on each clock cycle (when the coargnabled) [20]. A counter
that can increment (means to add 1) is called wmies. The down-counter
can decrement (means to subtract 1). The up/downteopcan increment and
decrement. The counters having a repeated staterseg are callethodulus
counters. The modulus refers to the number of differentestéahat make up the
counting sequence. For example, a binary coded@tatounter is used to
count from 0 to 9 (10 different states) is a modebOnter. A counter with N
flip-flops has a maximum of'2states (maximum modulus i8)2 The counters
are typically built up from JK, T or D flip-flops.

Counters are classified into two categoried:[27

» Asynchronous Counters (Ripple counters)

» Synchronous Counters

71

Asynchronous Counters
The Ripple Counter

A three-stage (modulo -*Rup-counter using JK flip-flops is shown in Figure
3.17. The flip-flops are connected to toggle, ahdnge state during 1-to-0
transition on clock. The input signal, whose pulsesto be counted, is applied
to the clock input of the first flip-flop, and theutput of each flip-flop is
connected directly to the clock input of the né&ite flip-flop clear inputs are
connected together, before counting starts; a prdseclear all the flip-flops.
During counting a delay is caused by thppling , which results in a limitation
of the maximum frequency of the input signal. Thgplle counters could be
down-counters as well.

Q0 2l Qz
Tnput IO Q0 I a1 I2 Q2 J
Clk FFO _ Clie FF1 _ Clic FF2 _
Ko Q01— K1 Q= Kz @2 —

1 1 1

Figure 3.17 Mod-8 ripple counter
Divide-by-N Counter

A mod-N counter may also be described as a dividdtirounter [27. The
circuit shown in Figure 3.18 acts as frequencydsvi In general, in an N flip-
flop circuit, the input frequency is divided by' 2 steps of 2. The negated
output of the first flip-flop is directly connected the clock input of the second
one, which is the most significant flip-flop. ThedQQ1 output values depend
on the response of a pulse at the trigger inputkc{on the rising edge of the
pulse). The FFO output frequency is equal to adfalie main clock frequency,
and the FF1 output’s is quarter of it. Thus, tkisin example of a divide-by-4

counter. Q0 o1
Tnput JO Q0 J n Q1 J
Cl FFO _ Clke FF1 _

1 1
Figure 3.18 Divide-by-4 counter

72

Synchronous Counters
Ring Counter

In synchronous counters, the clock input is coregktd all of the flip-flops so
that they are clocked simultaneously. A 4-bit rogunter using D flip-flops
shown in Figure 3.19 is very similar to the 4-diifsregister (Figure 3.16).
Thering counter Q3 output is fed back to DO input. If Q0 = 1 whipd = Q2
= Q3 = 0, each clock pulse shifts the 1, first th @en to Q2, Q3, and finally
back to QO, as a ring. Since the ring counter mmased from four flip-flops,
and has four distinct states, is called a modubtodnter. Each flip-flop output
frequency is equal to a quarter (1/4) of the mémlcfrequency.

Q0 Q1 Q2
Diata ‘ Q3

input Do Qo —— D1 Q1 — D2 Q2 — D3 Q3

Cli Cli Clc Cli

Clock

Figure 3.19 Ring counter

A ring counter has many applications, as: frequedigider, code generator,
counter, period and sequence generator etc. [28].

Johnson Counter

The Johnson counteris very similar to thel-bit ring counter shown in Figure
3.19, having in the feed back loop an invertertherinverted output Q3(3)

of the last flip-flop is connected to the inputtbe first flip-flop. An N-stage

Johnson counter has 2N different states, anddbmsidered as a modulo-2N
counter. The Johnson counter is economical, ittmimplemented with only
half the number of flip-flops.

73

Case Study 1: Synchronous Modulo-3 Counter

A modulo-3 counter[22] has only three different states, and to cover them
need only two flip-flops (generating 2lifferent states). Table 3.4 lists the
counter states (th¢ 1 state is omitted), the two JK flip-flop circuit dnts
waveforms is shown in Figure 3.20.

Counter state 1 Q0
(2h 2"
0 0
1 0 1
1]
0]
1 0 1
1 0
0 0 0

Table 3.4 State table

The flip-flops are initially reset (Q1Q0 = 00) [22]hen Q1 = 1 and JOKO = 11,
FFO is set by the first clock pulse. Now Q1Q0 = 01.

Since JOKO = 11, the next clock pulse will reseDFRaking Q0 = 0 once
more. Since Q0 = 1 before the second clock pulgeear FF1 is set by the
second pulse and Q1 becomes 1.

With Q1QO0 = 10, JO = 0 while KO = 1. After the thiclock pulse, Q1Q0 = 00,
which was the initial state.

In general, the design of a synchronous countequésdial logic circuit)
requires the design of a combinational logic circand a memory unit,
composed from flip-flops.

The counter design starts with develop of the siegram and the next-state
table for a specific counter sequence. Based on fliplop transition
(excitation) table the Karnaugh-maps are used tvel¢he logic expressions
for flip-flop inputs. Finally, the counter implemition is given [29].

74

70 Qo 7 Gl —

] Clk FF0 % Ck FF1

Lo
=
=
=
=
'

00 01 10 00 01

b}
Figure 3.20 Mod-3 counter a) circuit; b) waveform

Case Study 2: Design the 3-bit Gray code counter ing) JK flip-flops

The Gray code is a binary representation for pasitintegers having a
sequence with a special property (see Table Zhthd next the design of the
3-bit Gray code counter is presented. Figure 3t®iws its state diagram and
next state table.

Based on JK flip-flop excitation table (see Fig8r&2 a) Figure 3.22 shows the

Karnaugh maps for present-state J and K inputstlamdogic expressions for
the flip-flop inputs [29].

75

0

Figure 3.21 State diagram and next state tabla &bit Gray code counter

Q201
00

01

11

10

Q2Q1
00

01

11

10

Q0 1
0 0
e
| =
X X
T2=01100
Q0 1
ST =
X X
0 0
K
| IK2=QI@J

Q201

Q2Q1
00

01

11

10

FPresent State MNext State
Q2 Q1 Qo Q2 Q1 Qo
]]] 0] 1
0 0 1 0 1 1
0 1 1 0 1 0
0 1 0 1 1 0
1 1] 1 1 1
1 1 1 1 0 1
1 0 1 1 0 0
1]] o]] o]

20

0 1
A
e
X X
0 0
I1=0200

Q0 g 1
X X
0 0
2l
x | \s/

K1=02Q0

Q2O 1
w| A | D
01 0 X
o
10 0 W

T0=0201+02 Q1
I0=01 @ Q2
0
Q-
00

01

10

D
D

X
& |

11 X
G_

K0=0201+02 Q1
Ko=0Q1 @ Q2

Figure 3.22 Karnaugh maps and the next-state Kandputs expressions

76

Finally, Figure 3.23 shows the 3-bit Gray code ¢euimplementation.
Digital counters are very useful in many applicaioThey can be easily found
in digital clocks and parallel-to-serial data corsien (multiplexing) [30].
The asynchronous counters logic circuit is veryptenwhile the design of a
synchronous counter involves complex logic circliite asynchronous has low
speed in comparison with the synchronous desigrereviall flip-flops are
clocked simultaneously.

Q2 J

K1 — K2 —

g R 2 a @ W

1
J1 < Iz

FF2
Cl

FF1

Clic Clic

ﬂDi v FE0 ¢ T

J
ss

Clack

Figure 3.23 The hardware diagram of the 3-bit Grage counter

77

Problems

3.1

3.2

3.3

3.4

3.5
a) 8

3.6
a) 3

3.7

Draw the schematic of a four-input CMOS NOR and NIAate

Draw the schematic of the logic functibh=A+ B (F + G from
CMOS gates

In the next circuit the sketch Q1 and Q2 (time dereegligible)
waveforms

! L
o Qo hyt Q1 —D—‘» hil Ql —

Clk FFO — Clk FFq L Clk FF1
K0 g0 K1 o)| K1 o1

Clock

Using four D flip-flops, design a 4-bit register iwh can be used for
parallel-in parallel-out data transfer. Show therfmput and four
output waveforms when the data word 1110 is trarede

How many flip-flops are required to count to
b) 28 c) 67 d) 1247

What is the maximum modulus for a counter whichtaors
b) 6 c)8 d) 10 flip-flops?

Design a four stage counter that has six staté€¥;@110; 0111; 1100;
0001 and 1101

78

Chapter 4

Semiconductor Memories and Their Properties

All sequential circuits have a memory property whis due to the use of basic
memory units, such as flip-flops. In this chaptex will overview the main
memory types, how they are built, their main feasyiand how they work.
From the memory data-holding point of view the meae® are classified in
two main groups: asolatile and nonvolatile types. Volatile memory is also
calledRAM (random access memory), while nonvolatile is celROM (read
only memory). The RAM can be written to and reaairfr and the ROM can
only be read from. We speak about a M x N memopacay if the memory
component is able to store M data items of N bithe#@ word represents each
data item in a memory. Words can be read one by amk written using
address inputs.

4.1 Volatile Memories

In this subsection we will discuss RAM memory inngeal presenting the
SRAM, DRAM, and CAM memory types. The volatile meamas criterion is
that they store their information as long as thevgrosupply is on. A RAM is a
kind of memory whose contents can be easily matlif@@riting (storing) data
into a RAM chip is as fast as reading data. Figtileshows a block diagram
for a 1024 x 32 RAM (M = 1024, N = 32pata is a 32-bit wide set of data
lines used as input lines during writes or as dutjuring reads. ADRS is a
10-bit (2° = 1024) input serves as address line during readsites. RW is a
control input which value is O for read operatiomd &W = | for write. EN is a
1-bit control input that enables the RAM for readar writing [20].

Figure 4.2 shows the logical internal structureanfM x N RAM which is an
array of bit storage blocks, known eslls A collection of N cells forms a
word, and there are M words. The address inpuigeainto a decoder selecting
all the cells in one word corresponding to the en¢saddress values. The EN
and RW inputs role are the same as above. The lo&ts are connected
through one word’s cell to the next word’s cell.

79

32 DATA

10 1024 = 32
ADRS EAM

Figure 4.1 1024 x 32 RAM black box

WDATA 07-1) WDATA (-2) WDATA 0

Bit storage
WORD | ! . block
EMABLE
Do N R N WORD
ADRS0 AxM ! v !
» A0 decoder [N IR i A it B SO N
D1 e i ot e B Bt e
ADRD1 » Al =
v .
: ce
DATA
ADERS (A-1) » A (A1) L ¥ L
Cle g D@D |woRD | WORD |
— " ™ ENAEBLE | ENABLE
BN T P|RW DATA
] v
EW
1 4 toallcels
" v "

RDATA (N-1) RDATA (I9-2) RDATAD

Figure 4.2 Logical internal structure of a RAM
Static Random Access Memory (SRAN!

SRAM is one of the most known temporary memory $yp& static RAM
could be modeled as two inverters connected inop ks is shown in Figure
4.3 [20].

A D bit storing procedure is simple; the bit with ghrough the bottom inverter

resulting in aD value, then back through the top inverter to bex@ragain.
To write a logic-1 in a RAM cell it is required to set DATIke to 1, and

DATA =0 value. Toread fast a stored bit it is recommended to set both

80

DATA and DATA lines to logic-1 (so called precharging), and thgrhaving
ENABLE to logic-1. Each memory has a specific tignghiagram that specifies
the correct time sequence of the events.

The Figure 4.3 shows a common SRAM cell implememtatthe so-called 6
transistor cell. The structure consists of two srogupled CMOS inverters
plus two access nMOS transistors responsible fanecting the inverters to
the input/output bit lines when the correspondirayaMine is asserted.

DATA DATA

D 5 cell
WORD T 0 T
ENABLE

Figure 4.3 SRAM cell

Dynamic Random Access Memory (DRAM)

The inexpensive and reasonably high-speed DRAM mgn® a single
transistor memory cell array. A DRAM cell consi$tame transistor, which is
used as a switch to allow a charge to be moved antout of the second
component, a capacitor, as is shown in Figure 4.4 .

To write data into a DRAM cell the enable input value lab¢ logic-1. The
data line values (logic-1 or 0) occur the chargingputting on to ground level
the top plate of the capacitor. When ENABLE is re&d to O, the transistor is
turned off; the charge is trapped in the capaatod ideally cannot change
until the enable will be 1 again. It is very impont to select a relatively large
capacitor, to lengthen its discharging time.

DATA

cell

WORD l
ENABLE

|

Figure 4.4 DRAM cell
81

To read a stored bit the DATA line voltage must be sethi® midway between

0 and Vcc, and the ENABLE = 1.

The value stored in the capacitor will modify thatal line voltage level. A

special circuit is able to detect the changing anwlifies it to logic-1 or 0.

Since the reading discharges the capacitor, the Rt immediately write

the bit read back to the bit storage cell. This rapen is performed

automatically by a memory controller. A built-in mery controller is vital to

perform a refreshing step in every few microsecoridee RAM must be

refreshed periodically (e.g. 64 ms refresh intgrda@cause information is
stored onto capacitors which can lose their chadg®AM is slower than the

SRAM because every read must be followed by anmaatic write.

In a DRAM memory chip, the cells are arranged iwsacand columns, as
shown in Figure 4.5. In this particular case, thasize is 256 rows by 256
columns of 4-bit words. The row and column addregaetotal of 16 bits) are
multiplexed. The memory array is controlled by #ignals (1)—(6) generated

by the timing and control unit after processiﬁ_& (output enable)W_E (write

enable),RAS (row address strobe), ar@AS (column address strobe). As in
the SRAM chip, data are obviously maintained whilstandby modg31].

Q]

3 —t} Ituprat register |
A0 -]
i «p DD
- |2) «» Dl
A2 = I —f\' Memoty atray g i
gl 256 x 256 x 4
R ml i «» D2
= [T
[=] il
4
AT . = D3
I
® © 17 I
) —{ Column decoder ® @
@) & Column ac::ir. regis':r OE
A 3 Timing —
‘_
| (1-6) (:: and WE
control ' &S
¢ CAd

Figure 4.5 Simplified view of a conventional DRAMip
82

Content-Addressable Memory (CAM) for Cache Memories

While in the cases of the above memory types duthegeading operation an
address is selected, to which the memory respoittisive value stored in that
address, in a CAM instead of an addresgoatent is presented. In this
approach the memory responds with a ihisuch content is stored in the
memory. This type of memory, also calladsociative memory is used in
applications where performing a “match” operatismeécessary.

4.2 Nonvolatile Memories

In this subsection we will discuss ROM memory imgel presenting the
PROM, EPROM, and EEPROM memory types.

The read-only memory, or ROM, is a special kindre#mory which does not
lose its contents when power is shut off. A ROMdeéaster and consumes
less power than a RAM [20]. The ROMs are applieduoh of systems where
it is important to store programs that should net rhodified. Examples:
arithmetic circuits might use tables to speed ummatations of logarithms or
divisions or in many computetie BIOS system, etc. Figure 4.6 shows the
black box of a 1024 x 32 ROM. The ROMSs internalistre is very similar to
RAM architecture (see Figure 4.2). Since this mgnoain be read from but not
written to, the WR and WDATA inputs are not needéde ROM does not
have a clock input because no synchronous writesran a ROM. From this
reason a ROM is like a combinational circuit whtére inputs are the address
lines, and it produces some data as the output.

32
] DATA
10 1024 x 32

— < | ADRS ROM

—»{ EIT

Figure 4.6 1024 x 32 ROM black box

In the next two popular methods are described terstand how bit storage is
implemented.

83

Mask-Programmed ROM

Figure 4.7 illustrates mask-programmed ROM cellscwhare programmed
during fabrication. The left cell is programmediwit by directly wiring logic-
1. The right cell is programmed with 0. Mask-pragraed ROM has the best
compactness of any ROM type.

1 DATAline 00 DATA line

cell cell

LT LT
WORD 1 1

ENABLE))

Figure 4.7 Mask programmed ROM cells
Fuse-Basd Programmable ROM - PROM

This ROM type has fuses in each bit storage ceis ahown in Figure 4.8. In
the initial phase, the ROM is manufactured witlaattfuses; all stored contents

are logic-1.

1 DaATAline 1 DATA line
| |

CE].]. cell
' <2

WORD T 1T Jr

ENABLE i J.“ r
fuse blown fuse

Figure 4.8 Fuse-based ROM cells

If the fuse is intact, like a wire, the cell lodiceontents is enabled which
appears on the data line. A special device, a progrer is able to set the
ROM contents. By passing a higher than normal otartierough the fuse, the
connection is eliminated, the fuse is blown, antbgic-0 is occurred. The
ROM which can be programmed (written) only oncecalled one time
programmable ROM or PROM.

84

Erasable PROM - EPROM

Most of the commercial reprogrammable ROMs are dbase floating-gate
transistors. Figure 4.9 depicts a logical view ofeiasable PROM cell. Each
cell consists of a special type of transistor vétparticular gate in which the
electrons are captured. At the beginning an EPR@IMstores a logic-1 value,
see Figure 4.9 left cell. When a programmer deapmaies higher than normal
voltage to those transistors in cells that showtatesOs, in the floating gate
transistors appear the trapped electrons, seed~garight cell.

floating _?_ DATA line _?_ DATA line

gate =
transistor \ 1 cell 0 cell
e e e

WIORD I_J__l I@"‘ﬁx

ENABLE]

~_trapped
electrons

Figure 4.9 EPROM cells

Exposing an EPROM chip to ultraviolet (UV) light afparticular wavelength
causes all the stored Os (charges) to disappesseeafter which the memory
can be programmed again. This kind of chip cancelpi be erased and
reprogrammed about ten thousand times or more andretain its contents
without power for ten years or more [20]. Usualyn EPROM chip has a
window in the package through which UV light casga

EEPROM and Flash Memory

EEPROM solves the erasure problem of EPROM withghtsmodification in
the floating-gate transistor. To program an eleatly erasable PROM
(EEPROM)a high voltage has to be applied in order to thepediectrons in the
floating gate transistor, and another high voltagest be used to free the
electrons. Figure 4.10 shows a black box of an EBEIAR

The data lines are bidirectional. Because EEPRO$#swoltages for erasing,
instead of UV light, it is possible to erase angrogram certain words without
changing the contents of other words. If EN = 1jlevRVRITE = 1 indicates
that the data on the data lines should be programme the word at the

85

address specified by the address line. The BUSMtiigoresponsible to show
that programming is not complete.

32

-«
10

s | ADES
1024 = 32
» EN EEPEOM

DATA

— WEITE

+— BUSY

>

Figure 4.10 1024 x 32 EEPROM black box

Modern EEPROMSs can be programmed tens of thoudanatglions of times,
and can retain their contents for tens to one hathgears or more without
power [20].

Flash memory (also called Flash EEPROM) is a combination of BRR
(requires only one transistor per cell) with EEPRQ@®Mectrically erasable and
electrically programmable). A flash memory can erasry quickly a memory
block, sector or the whole memory.

The next generation memories should be nonvolatiity very high density,
fast read and fast write cycles, low power consumnpand low cost.

4.3 Memory Expansion

In many applications there is a need to expandgystem memory capacity. In
the next examples we will present two approacheshwhse small RAMs as
building blocks for making larger memories [32].

Example 1Expand the address line

The task is to build a 256K x 8 RAM from 64K x 8 RI&. A 64K x 8 RAM
has @° 2" = 2'°) 16 address lines, and 8 data lines. In orderxard the
address to 256K 2 [2'° = 2'*) we have to introduce two extra address lines,

because we have twice as many words to addressviN\reeed four 2°) 64K
x 8 RAMs. The 256K x 8 memory design with the cepending address

86

ranges is shown in Figure 4.11. The two most siggmit address lines go to the
decoder, which selects one of the four 64K x 8 RAMps. The other 16

address lines are shared by the 64K x 8 chips.6Bikex 8 chips also share
WR and DATA inputs.

DATA
o5

— EN 3

ADRI1T7 Q2

ADRIG |
— =0 Qo

64K x 8
ADR15-0

ADRS 111111 1111 1111 1111 (0x3FFFF)
— DATA OUT — to
11 0000 0000 0000 0000 (0x30000)

64K x 8

ADRS t{01111111111111111(0)(2FFFF)
o

100000 0000 0000 0000 ¢(Dx20000)

—— DATA OuT —
o=

64K x 8

ADRS
—— DATA OUT—

011111 1111 1111 1111 (0x1FFFF)
to
(o33} 01 0000 0000 0000 0000 ¢0x10000)

64K x 8

ADRS 001111 1111 1111 1111 (0x0FFFF)
L DaTa OUT] to
o8 00 0000 0000 0000 0000 (0x00000)

CuT

Figure 4.11 256K x 8 memory from 64K x 8 chips addiress ranges

Example2 Expand the data line

For example, suppose we have available a large euofl64K x 8 of RAMs,
but we need a 64K x 16 RAM. We have to use two 84<of RAMSs to obtain
16 bits per word. We connect the 16 address ingudsthe enable input to the
two ROMSs, as is shown in Figure 4.12. We grouptiye 8-bit outputs into our
desired 16-bit output. Thus, each ROM stores one @fythe 16-bit word.

The left chip contains the most significant 8 lofsthe data. The right chip
contains the lower 8 bits of the data.

87

ADR3

DATA

C3

[N &

ADRS
DATA ouT
o]

64K 28

ADRA
DATA ouT
o

WER WER FW’R

ouT

Figure 4.12 64K x 16 RAM, created from two 64K xldps

Example 3Expand the address and data line

The task is to build a 4096 x 32 RAM from 1024 RBMs. In this case it is
necessaryo createmore and wider words. In the first step we geneaad€©96
x 8 RAM by using 4 RAMs. The top two address liaes connected to a 2x4
decoder to select the appropriate RAM. Finally,wwéen the RAM by adding
3 more RAMs to each row.

Problems
4.1 Draw a logic structure of a 1K x 8 RAM built frpm 1K x 1 RAMs
4.2 Draw a logic structure of a 32 x 4 RAM built fupm 16 x 4 RAMs

4.3 Draw a logic structure of a 32 x 8 ROM built fupm 16 x 4 ROMs,
giving the corresponding address ranges

4.4 Summarize the main differences between the DRahdi SRAM
memories

4.5 Summarize the main differences between the BEPROd EEPROM
memories

88

Chapter 5

Microprocessors Basics

In general, a microcomputer or microprocessor sysgea set of components
built up from microprocessor, memory elements ampaii/output units. The so
called single purpose processors [20] are ableetéopn a single processing
task. They are fast and have power efficient coatpr. In the second main
group belong the popular and more widely known gangurpose processors,
the programmable processors. They are mass-prodacedused in many
applications. This chapter presents a microcompuigganization, and
introduces a typical, simple microprocessor, illashg its few instructions.

5.1 Basic Microcomputer Organization

The microcomputer main units are: thgut unit, the memory unit, the
arithmetic unit, the control unit, and theoutput unit [24]. The basic
microcomputer organization is shown in Figure 5.1.

CONTROL MEMOERY
THNIT + THNIT

[Instructions

Intermediate
and final
results

Decision Data
information

Data and ‘ l Final results

mnstructions ap— | »| ARTTHMETIC

OUTPUT UMIT ——»

Diata and Final results
instructions

Information signals

—————————— Control and addressing signals

Figure 5.1 Basic microcomputer organization

The program and data are first stored in the memnpityia the input unit. The
control unit interprets and executes the introduosttuctions. The arithmetic

89

unit contains the necessary data for execution hanel occurs most of the data
handling. Finally, the output unit delivers theuks to output. The arithmetic
unit and control unit constitutes tleentral processing unit (CPU) which is
themicroprocessorin a microcomputer system [24].

The Memory Unit

The memory unit consists of substorage elementigdaagisters [34]. They
are able to hold one computer word. The memoryeplalcere the substorage
elements are present is known asoaeation. Each location has a unique
address (integer number). The computer data and programsstared in the
memory forms like: ROM and RAM (see Chapter 4).

Beside the memory unit, the registers are abletdce she information, as
groups of digits. The group of binary digits handtegether is calleavord.
Modern processors, including embedded systems|lysizeve a word size of 8,
16, 24, 32 or 64 bits, while modern general purpmseaputers usually use 32
or 64 bits [33].

The Input/Output Units

Via the Input/Output units the computer communisatéh the outside world.
These devices are callpdripherals.

The ALU and control unit properties and roles vio# discussed in the next
subsection.

In many applications, in order to achieve a fastenputational speed,direct
memory accesyDMA) is allowed, when the I/O units could accesemory
directly, not through the arithmetic unit. Figurd Shows a direct link between
the I/O units and the arithmetic unit.

90

5.2 General Purpose Microprocessor

As is shown in Figure 5.2 a programmalpl®cessor consists of two main
parts: a datapath and a control unit.

) Data memory D
Instruction memory I Y
r
&~
= 2 l
v = 11— bit
E 2z 1
PC Ik o i
L&}
=
1 = Eegister file BEF
=
¥ E
s
o ¥ ¥
Controller -
> = ALU
(]
o
. =y
Control unit i Datapath

Figure 5.2 Basic architecture of a general purgposeessor
Basic Datapath

Programmable processor datapath (see Figure 5i@)ungés are: data memory,
register file and ALU [20]. Thelata memory D manipulates all the accessible
data (input, output data). Tlhead operationreads data from data memory and
loads them into one of the register filesL.U operation (typical includes
addition, subtraction, AND, OR, shift operations.getvhile the data is being
transferred)transforms register data and the result is send back into any
register of the register fil&tore operationwrites data from any register in the
register file to any data memory location. Eachrapen can be executed in
one clock cycle. In ALU the data are incorporatadthe accumulator and
scratchpad registers Theflag bit is also included in the arithmetic unit. Its

91

value provides information regarding to the cousseomputation. The set of
flag bits is kept in a special register, ffregram status word (PSW).

Basic Control Unit

A program is a sequence ahstructions (able to handledata), written to
perform a specified task. The program is storeth& processomstruction
memory | (see Figure 5.2). The control unit requiresantroller, which
executes the instructions [20].

The control unit controls and supervises the coerpoperations. Its role is to
receive the instructions, to decode them, and teigee the necessary signals
for execution. Within the control unit takes plaag@rogram counter (PC),
which indicates the instructions location. A pragraounter keeps the address
of the instruction to be executed [36]. It is inoented after each instruction
byte (the instruction locations are usually in saTme).

The information transmission between the micropssoeand memory and 1/0
devices is done via thaddress (unidirectional),data (bidirectional), and
control buses. The control bus lines could be uni- orrbadional. Over this
set of lines the signals manage timing and statiasmation [20].
Theinstruction register (IR) stores the control unit instructions, mainsathe
acceptation of the first byte of every instructioa the data bus from memory.
The control unit’s role is to provide the synchmation between various units.
Several clock periods are needed for exampldgtich the instruction from
memory, todecodeit (determine the operation and operands of te&uation),
and finally to executeit (carry out the instruction’s operations usirfte t
datapath) [35, 39].

Each of these time intervals, including one or mdoek periods, is called a
machine cycle[24]. The whole time period which involves the fata,
decoding and executing of an instruction is cadlachstruction cycle.

Each particular microprocessor has its amgtruction format.

5.3 Instruction Sets

An instruction is a collection of bits that insttsidhe processor to perform a
specific operation. The collection of all instracts for a processor is called
instruction set. The user specifies the operatitmde performed by the
processor and their sequence by the use of a pnogrdnich is a list of

instructions. A thorough description of the instro set for a processor is

92

called instruction set architecture (ISA) [37]. Timécroprocessor instructions
set depends on the microprocessor type.

In the next we consider a processor which usesitltructions and the

instruction memory is 16-bits wide [20]. We defiaesimple three instruction

set where the most significant 4 bits refers togperation, and the next 12 bits
include register file and data memory addresses.

Load instruction — 0000 r3r2r1r0 d7d6d5d4d3d2d1d0

This instruction moves the data (leaves the menumgtion invariably) from
data memory (whose address is given by d7d6d5d431iD into the register
file (whose address is indicated by r3r2r1r0).

Storeinstruction — 0001 r3r2r1r0 d7d6d5d4d3d2d1d0
This instruction moves the data from the regisilertb data memory (without
changing the register contents).

Add instruction — 0010 ra3ra2ralra0 rb3rb2rb1rbO rc3rc2rclrcO

The addition result of two register files registémespresented by rb3rb2rb1rb0
and rc3rc2rclrc0) is stored in the register filgister a (represented by
ra3ra2ralra0).

In a real programmable processor we need much imstaictions (perhaps
100 or more) [20]. In the next we extend the ingion set by introducing
three more instruction types.

Load-constant instruction — 0011 r3r2r1rO c7c6c5c4c3c2c1cO

A binary number (represented by c7c6c5c4c3c2cke®wn as a constant, is
loaded into the register (represented by r3r2rit€).bTrhe constant is a value,
part of the program.

Subtract instruction — 0100 ra3ra2ralraO rb3rb2rb1rb0 rc3rc2rclrcO

The subtraction result of two register files regist (represented by
rb3rb2rb1lrb0 and rc3rc2rclrcO) is stored in theisteg file registera
(represented by ra3ra2ralra0).

Jump-if-zero instruction — 0101 ra3ra2ralra0 0706050403020100
This instruction specifies that if the content dfetregister defined by
ra3ra2ralra0 bits i8, we have to load the PC value plus 0706050403020100.
The result is an 8-bit number in 2's complemenirfor

93

The addressing mode of the instruction shows thtedein which the address

field is defined. Several addressing modes exssf38]:

- Direct Addressing, wherein the effective addréssgiven in the
instruction;

- Immediate Addressing, wherein the operand foritiséruction is part
of the instruction itself;

- Indexed Addressing, which allows that the stattbress in an
instruction could be added to the content of aadled index register;

- Indirect Addressing, which works as a pointedjéating the location in
which the effective address (of the stated addireske address field)
can be found;

- Relative Addressing, wherein the stated addrastheé instruction is
added to the content of the program counter to ymedhe effective
address;

- Page Addressing Modes, used when the microcompugmnory is
larger than can be directly addressed by an instru¢the memory
might be divided into pages).

In a microcomputer system it is vital to handle theing of signals which

appear at the interfaces between their main compsn@ microprocessor,

memory units, I/O registers, and peripheral devices

The interfacing ensures the signal compatibilittwaen the memory units and

I/O registers to the microprocessor buses. This @amgolves the ability to

handle buses timing and control, and the datafeaias a given time between

the component and the microprocessor. The interfais responsible to make
proper connections between microcomputer and pergbhdevices, data
channels, and controllers.

The 1/0O ports, handshaking, main memory interfacoligect memory access,

program interrupts, microprocessor clocks etc. euppghe compatible

interconnection (regarding to timing, data format asignal type) between a

microprocessor with various system elements.

These topics will be discussed within the framewwila new book dedicated

only to microprocessors and microcomputers.

94

References

[1] http://www.liacs.nl/~stefanov/courses/DITE/leces/DITEOL.pdf
[2] http://educypedia.karadimov.info/library/218af

[3] http://www.gutenberg.org/zipcat.php/15114/154d0f. pdf

[4] http://educypedia.karadimov.info/library/Bootealgebra.pdf
[5] www.cpe.ku.ac.th.

[6] http://www.liacs.nl/~stefanov/courses/DITE/leces/DITEQ2.pdf
[7] http://www.liacs.nl/~stefanov/courses/DITE/leces/DITEOQ3.pdf
[8] www.ddpp.com/DDPP3_pdf/IEEEsyms.pdf

[9]http://academic.evergreen.edu/projects/bioprsfschnotes/misc/bin_math.
htm

[10] http://www.utdallas.edu/~dodge/EE2310/lec3.pdf

[11] G. S. White, Coded Decimal Number Systemdfigital Computers,
Proc., IRE,Vol.41, No.10, pp. 1450-1452, Octob&53

[12] http://www.inf.fu-berlin.de/lehre/WS00/19504/&hapterl.pdf

[13] A. Anand Kumar, Fundamentals Of Digital CinsyiPHI learning Pvt.
Ltd. 2003

[14] http://www.cis.upenn.edu/~palsetia/cit595s@Aures08/ErrorCD.pdf
[15] http://en.wikipedia.org/wiki/Unicode
[16] http://www.liacs.nl/~stefanov/courses/DITEAMers/DITEO4.pdf

[17] S.Givant, P. Halmos, Introduction to Boolealgébras, Springer, Series:
Undergraduate Texts in Mathematics, 2009

[18] http://www.asic-world.com/digital/combo2.htm

[19] http://lwww.electronics-tutorials.ws/combinaticomb_4.html
[20] F. Vahid, Digital Design, John Wiley & Sonsclr2007

[21] http://www.analog.com/static/imported-filegtaals/MT-083.pdf

[22] R. P. Jain, Modern Digital Electronics (4thitah), Tata McGraw Hill
Education Private Limited, 2010

[23] http://www.ti.com/lit/ml/sgyn133/sgyn133.pdf
95

[24] D. D. Givone, R. P. Roesser, Microprocessorsidomputers An
introduction, McGraw-Hill Book Company, 1980

[25] http://www.uotechnology.edu.ig/dep-
eee/lectures/4th/electronic/microelectronics/ppdt.

[26] http://www.liacs.nl/~stefanov/courses/DITEAMers/DITEQ7.pdf

[27] https://maxwell.ict.griffith.edu.au/yg/teacigifiins/ds_module3 pl.pdf
[28] http://www.scribd.com/doc/36619372/114/Ringu@ter-Applications
[29] https://maxwell.ict.griffith.edu.au/yg/teacigfins/dns_module3_p2.pdf
[30] https://maxwell.ict.griffith.edu.au/yg/teacigifiins/ds_module3_p1l.pdf
[31] V. A. Pedroni: Digital Electronics and desigith VHDL, Elsevier 2008
[32] http://www.liacs.nl/~stefanov/courses/DITEMers/DITELL. pdf

[33] http://en.wikipedia.org/wiki/Word_(computer chitecture)

[34] http://en.wikipedia.org/wiki/IBM_System/360

[35] http://en.wikipedia.org/wiki/Instruction_cycle

[36] http://en.wikipedia.org/wiki/Honeywell 316

[37] http://www.liacs.nl/~stefanov/courses/DITEMeres/DITEL12.pdf

[38] R. S. Goankar, Microprocessor Architecture,ogfamming and
Applications with 8085, 5thEdition, Prentice Hall

[39] http://cseweb.ucsd.edu/classes/sp08/csel4furtes/lab wk9.pdf

96

Further References

- J. E. Whitesitt: Boolean Algebra and Its Applioas, Courier Dover
Publications, 1995

- D. D. Givone, Digital Principles and Design, Me@rHill, 2003

- J. F. Wakerly:Review: Digital Design: Principlesd Practices, Pearson
Prentice-Hall, 2012

- M. M. Mano, M. D. Ciletti: Digital Design, Peansdducation, 2008

- Jr. C. H. Roth, L. L. Kinney, Fundamentals of lodesign, Cengage
Learning, 2009

- J. F. Wakerly, Digital Design: Principles and &iees Package {4Edition),
Pearson Prentice Hall, 2005

- A. P. Godse, A. Deepali, Godse Digital Techniglieshnical Publications,
2009

97

