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This is the  

 
3. LECTURE… 

But before starting with the new material, let’s repeat a few 

important points from the previous lecture… 

 

…because as the Latin proverb says  

 

  Repetitio est mater studiorum 
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AXIOMS OF BOOLEAN ALGEBRA 

1. Boolean algebra is defined on a set of two-valued  

 elements 

2.       Each element of the set has its complementary also  

 belonging to the set  

3.        Logic operations: conjunction (logic AND) and  

 disjunction (logic OR) 

4.        Logic operations are commutative, associative, and  

 distributive 

5.        Special elements of the set are the unity (its value is  

 always 1) and the zero (its value is always 0) 

Repetitio est mater studiorum 
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BOOLEAN THEOREMS 

 commutative law 

   A • B = B • A 

   A + B = B + A 

 

 associative law  

  A • (B • C) = (A • B) • C = A • B • C 

  A + (B + C) = (A + B)+ C = A + B + C 

 

 distributive law 

  A • (B + C) = A • B + A • C 

  A + (B • C) = (A + B) • (A + C) 

Repetitio est mater studiorum 
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DE MORGAN’S THEOREM 

De Morgan’s theorem occupies an important place in the logic 

(Boolean) algebra 

   ––––––        —     —   

   A + B = A • B 

   ––––––       —      — 

   A • B = A + B   

 

 

The negation of a logic sum (OR) or a logic product (AND) 

can be performed by negating (complementing) the logic  

operands and interchanging the logic operations (in place of 

OR put AND, in place of AND put OR). 

Repetitio est mater studiorum 
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KEY APPLICATION OF  

DE MORGAN THEOREM 

AND operation using OR and NOT 

               ————           

                —      — 

   A • B = (A + B) 

 

OR operation using AND and NOT 

                ———— 

                 —    — 

   A + B = (A • B) 

Repetitio est mater studiorum 
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SHANNON’S GENERALIZATION OF  

DE MORGAN’S THEOREMS 

The De Morgan-Shannon’s theorem refers to the logic or 

Boolean functions constructed using logic multiplications 

and additions 

 _____________         _  _   _ 

 f(A, B, C, ..., +, •)  = f(A, B, C, ..., •, +) 

 

The negation of the function can be performed by 

negating each variable and replacing all logic 

summations (ORs) with logic multiplications (ANDs) and 

replacing all logic multiplications (ANDs) with logic 

summations (ORs).  

Repetitio est mater studiorum 
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COMBINATIONAL CIRCUITS IN 

PRACTICE 

From De Morgan’s theorem it follows: 

 

Any two-level AND-OR  

(sum-of-products) network  

can be implemented with  

two-level NAND-NAND network. 

 

Any two-level OR-AND  

(product-of-sums) network  

can be implemented with  

two-level NOR-NOR network. 

Repetitio est mater studiorum 

      AND-OR             OR-AND 

sum-of-products     product-of-sums 

      NAND-NAND             NOR-NOR 
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        Some addenda …  

 
 

NOTE ON SYMBOLS 

Hungarian standard 
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ALGEBRAIC TRANSFORMATION OF 

LOGIC EXPRESSIONS: PRACTICE 
Bring to a simpler form the following expressions: 

         _            _ 

 Y = AB + AB + ABCD Answer: ? 

 

        ____   ________                               

 Y = ABC + A + B + C  Answer: ? 

    

       _            _           _ 

Y = CBA + CBA + CBA + CBA Answer: ? 

 

Note: the last function is called the (3-variable) majority 

function, it also gives the carry-out in a 1-bit binary full adder 

(operands A and B, carry-in C). 

It is to emphasized that the rules of manipulations in logic 

algebra are not the same as in the common algebra!  

ALGEBRAIC TRANSFORMATION OF 

LOGIC EXPRESSIONS: PRACTICE 
Bring to a simpler form the following expressions: 

         _            _ 

 Y = AB + AB + ABCD Answer: Y = A 

 

        ____   ________                                _     _    _ 

 Y = ABC + A + B + C  Answer: Y =  A + B + C 

    

       _            _           _ 

Y = CBA + CBA + CBA + CBA Answer: = AB + BC + CA 

 

Note: the last function is called the (3-variable) majority 

function, it also gives the carry-out in a 1-bit binary full adder 

(operands A and B, carry-in C). 

It is to emphasized that the rules of manipulations in logic 

algebra are not the same as in the common algebra!  
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ALGEBRAIC FORM OF LOGIC FUNCTION 

GIVEN BY ITS TRUTH TABLE: EXAMPLE 

ROW    A     B    C     Y 

   0        0     0     0     0 

   1        0     0     1     0    

   2        0     1     0     1  

   3        0     1     1     0  

   4        1     0     0     1 

   5        1     0     1     0 

   6        1     1     0     1 

   7        1     1     1     0 

The algebraic form of the logic 

function Y(A,B,C) can be read off 

from the column Y, and can be 

written as the disjunction of three 

conjunctions (where Y = 1): 

                  –   –      – –          –    

Y(A,B,C) = ABC + ABC + ABC 

 
Using appropriate factorings 
        –          –         –       –          – 
Y = (AB + A(B + B))C = (AB + A)C 

                          –             –               –       –       –    
Y(A,B,C) = (A + A)(A + B)C = (A + B)C = AC + BC 
 
It can be seen that several equivalent algebraic forms exist! 
The last form cannot be reduced further, and is the same which 
can be obtained by using Karnaugh map minimization. 

REALIZATION OF LOGIC FUNCTION  

Both the original function 
                             –   –       – –         –    
 Y(A,B,C) = ABC + ABC + ABC    

 

and the reduced (minimized) form 
                                      –       –    
                 Y(A,B,C) = AC + BC 

 

can be realized with two-level AND-OR gate network, or 

based on De Morgan’s theorem, with two-level NAND-

NAND gate network. The first version requires 4  gates  

and 12 pins (gate inputs), the second version requires 3 

gate and 6 pins (gate inputs). 



2019.09.07. 

8 

HOMOGENOUS NAND GATE CIRCUIT 

 

 

The  two-level homogeneous NAND gate realization  follows 

from a transformation from the AND-OR expression based 

on De Morgans’s theorem. 

                                                ________ 

                                                ___   ___ 

                                _       _         –      –  

           Y(A,B,C) = AC + BC = (AC) (BC) 
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NAND-NAND 
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TECHNICAL ASPECTS: MAPPING FROM 

PHYSIACL WORLD TO BINARY WORLD 

Technology   State 0   State 1 
 
Relay logic   Circuit Open      Circuit Closed 
CMOS logic   0.0-1.0 volts      2.0-3.0 volts 
Transistor transistor logic (TTL)   0.0-0.8 volts      2.0-5.0 volts 
Fiber Optics   Light off      Light on 
Dynamic RAM   Discharged capacitor  Charged capacitor 
Nonvolatile memory (erasable)   Trapped electrons      No trapped electrons 
Programmable ROM   Fuse blown      Fuse intact 
Bubble memory   No magnetic bubble   Bubble present 
Magnetic disk   No flux reversal     Flux reversal 
Compact disc   No pit     Pit 
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TECHNICAL ASPECTS: NOISE IN 

ANALOG AND DIGITAL SYSTEMS 
 

 

18 

TECNICAL: ELEMENTARY SWITCHES  
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LOGIC (BOOLEAN) FUNCTIONS 

1. Logic functions: fundamental concepts, general 

properties 

2. Two-variable Boolean functions: a summary 

3. Fully specified and incompletely specified logic functions 

and logic problems 

4. Canonic algebraic forms of logic functions (disjunctive 

and conjunctive canonic forms). 

5. The concept of minterm and maxterm, their properties  

20 

BOOLEAN FUNCTIONS 

The one- and two-variable operations  of Boolean algebra can 

be considered as functions of one and two variables, 

respectively. 

In the case of generalized functions the number of variables is 

extended only.  

n-variable Boolean or logic function  

 

   Z = f(X1, X2, .........Xn) 

 

The particular truth value  of Z is defined by the f function.  
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LOGIC (BOOLEAN) FUNCTIONS AND 

COMBINATIONAL NETWORKS 

To each logic function a combinational network can be given, 

and vice versa to each logic problem and combinational 

network an appropriate logic function can connected.  

 

With the help of logic function the operation of combinational 

networks can be unequivocally described.  

 

For this reason it is necessary to get acquainted in detail with 

the properties of logic functions.  

 

What follows is detailed survey of one- and two-variable logic 

functions. 
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ONE-VARIABLE LOGIC FUNCTIONS 

In the case of one variable four Boolean functions are possible. 

 

A fo
1(A)   f1

1(A)   f2
1(A)   f3

1(A) 

———————————————————————— 

0 0  0  1  1 

1 0  1  0  1 

———————————————————————— 

In the fi
n  notation the index n denotes the number of variables, 

the index i denotes the decimal value of the binary number 

represented in the corresponding column.  

                                _ 

Two logic constant 0, 1, and two ”real” functions A, A.  
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TWO-VARIABLE LOGIC FUNCTIONS 

Classification and properties of two-variable Boolean 

functions. 

 

In the case of  two variables the number of possible input 

combinations is 22 = 4, therefore the number of possible two-

variable functions is 24 = 16. Each function describes a 

single or complex  logic operation. 

 

Generalization: n variable, possible input combinations  

 k = 2n, the number of possible n-variable functions is 2k, 

(exponential growth!).  

E.g. for n = 3 256, 

 for n = 4 65 536, 

 for n = 5 4 294 967 296, …, etc. 

24 

TWO-VARIABLE BOOLEAN FUNCTIONS 

A  B      fo
2  f1

2    f2
2.....       f8

2 .....      f14
2   f15

2            

————————————————————— 

0  0    0     1     0 .....        0  .....         0      1 

0  1        0     0     1 .....        0   .....        1      1 

1  0        0     0     0 .....        0   .....        1      1 

1  1        0     0     0 .....        1   .....        1      1 

————————————————————— 

Notation: fi
n .  

Index i: decimal value of the binary number read from the 

column (LSB upper row). 

Functions with indices i and 15-i are complements of each 

other.  

 

Cf. Rőmer’s text p. 9, or  Zsom’s text (I) p. 71. 
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CLASSIFICATION OF BOOLEAN 

FUNCTIONS OF TWO VARIABLES 

Function name   f(A,B) 

——————————————————————              

Logical constants   0, 1   

         —          —     

Functions of one variable   A, A, B, B 

                      ——    ——— 

AND, OR, NAND, NOR  A•B, A+B, A•B, A+B 

     —             —    — —  

XOR (AB ), XNOR (AB) A B+A B,  A B+A B 

 

INHIBITION      A  B, B  A 

 

IMPLICATION   A  B, B  A 

26 

LOGIC CONSTANTS 

A  B    fo
2   f1

2    f2
2....    f14

2   f15
2            

——————————————— 

0  0    0     1     0 .....    0      1 

0  1        0     0     1 .....    1      1 

1  0        0     0     0 .....    1      1 

1  1        0     0     0 .....    1      1 

——————————————— 

fo
2 zero-function, its value is always 0, independently of 

the variables. 

f15
2 unity-function, its value is always 1, independently 

of the variables. 

These are the logic constants. 
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ONE-VARIABLE FUNCTIONS 

   f12
2 (A,B) = A 

          — 

   f3
2 (A,B) = A 

   f10
2 (A,B) = B 

          —    

   f5
2 (A,B) = B 

 

These are not true two-variable functions but one-variable 

functions. They represent the true and negated values of 

the variables. 
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BOOLEAN FUNCTIONS OF TWO VARIABLE 
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LOGIC FUNCTIONS: 

AND, OR, NAND, NOR 

 A  B      f1
2 ..... f7

2..... f8
2 ..... f14

2            

 ——————————————— 

 0  0    1   .....  1 .....   0  .....   0 

 0  1        0   .....  1 .....   0  .....   1 

 1  0        0   .....  1 .....   0  .....   1 

 1  1        0   .....  0 .....   1  .....   1 

 ——————————————— 

     ———        —— 
     A+B      AB      AB      A+B 
 
             NOR   NAND   AND     OR 

 
  

30 

TWO-VARAIBLE FUNCTIONS: 

ANTIVALENCY AND EQUVALENCY 

Function name   f(A,B) 

——————————————————————              

Logical constants   0, 1   

         —          —     

Functions of one variable   A, A, B, B 

                      ——    ——— 

AND, OR, NAND, NOR  A•B, A+B, A•B, A+B 

     —             —    — —  

XOR (AB ), XNOR (AB) A B+A B,  A B+A B 

 

INHIBITION      A  B, B  A 

 

IMPLICATION   A  B, B  A 
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ANTIVALENCY (XOR) 

 EQUIVALENCY (XNOR) 

A B    f6
2    f9

2              

——————       Antivalency (exclusive OR, XOR, A  B) 

0  0    0      1 

0  1    1      0        Equivalency (coincidence, XNOR, A  B)   

1  0    1      0   

1  1    0      1   

——————    

                      —            —      

XOR   f6
2 = AB = A B+A B,   

                        — —  

XNOR    f9
2 = AB = A B+A B 

                                                                          ____ 

The two functions are complementary: AB = AB  
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ANTIVALENCY, EXCLUSIVE-OR 

A  B  f6
2             

————             _           _           

0  0  1     f6
2  = A B + A B 

0  1      1   

1  0      1     usual notation: 

1  1      0    

————     f6
2  = A  B 

 

 

 

ANTIVALENCY or EXCLUSIVE-OR, the function is1, if  ane 

of  the variables 1 while the other is 0, and is 0, if both 

variables are simultaneously  0 or 1. 

Symbol       Time diagram 
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EQUIVALENCY, EXCLUSIVE-NOR 

A  B    f9
2             

————                     _ _ 

0  0      1    f9
2  = AB + AB 

0  1      0   

1  0      0    usual symbol: 

1  1      1    

————    f9
2  = A  B 

 

 

 

EQUIVALENCY (EXCLUSIVE-NOR), the function is1, if both 

variables ar simultaneously 0 or 1, and is 0 if one of the 

variables is 0 and the other is 1. 

Symbol       Time diagram 
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ANTIVALENCY 

 A  B    f6
2     The f6

2  = A  B operation realizes  

 —————    also mathematical operation of binary  

 0  0    1      addition of two bits without carry  

 0  1        1      (binary half-adder).  

 1  0        1 

 1  1        0 

 —————  

 

The antivalency operation or gate can also be considered as 

a digital 1-bit comparator. 

By appropriate chaining n-bit comparators can be 

constructed. 
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EXLUSICE-OR: IMPLEMENTATION 

The EXCLUSIVE-OR operation can be implemented  

ousing AND, OR gates and inverters (NOT) based on the 

Boolean equation. 

 

Or it can be implemented, after appropriate transformation 

using the universal NAND or NOR elements. 

 

In the  TTL and CMOS modular logic families EXCLUSIVE-

OR gates are also available. 
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EXCLUSIVE-OR IMPLEMENTATIONS 

                                       ——————— 
                                       ——   ——                             
                     —             —             —          —   
          AB = A B+A B = (A B)(A B)  
 

It is supposed that the negated imput variables are available.. 
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EXCLUSIVE-NOR: EQUIVALENCY 

                             — —  

   AB =  A B+A B 

 

According  to the truth table XNOR is the complemenet 

(negated) of XOR. 

 

When extending to more the two variables, several different 

definitions are used! E.g. According to MSz (Hungarian 

Standards) for three variables the value of XNOR is 1 only 

for the input combinations 000 and 111, and is 0 for all other 

combination. 

The other usual definition assigns a value of 1 to the output 

if even number of inputs is 1. 

38 

EQUIVALENCY (XNOR) IMPLEMENTATIONS 
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XOR, XNOR REALIZATIONS WITH NOR 

ANTIVALENCY (XOR) and EQQUIVALENCY (XNOR) 

realizations with homogeneous  NOR gate circuitry. 

40 

TWO-VARAIBLE FUNCTIONS: 

INHIBITION AND IMPLICATION 

Function name    f(A,B) 

——————————————————————              

Logical constants    0, 1   

         —        —     

One-variable functions  A, A, B, B 

                      ——    ——— 

AND, OR, NAND, NOR  A•B, A+B, A•B, A+B 

     —            —     — —  

XOR (AB ), XNOR (AB) A B+A B,  A B+A B 

 

INHIBITION    A  B, B  A 

IMPLICATIION   A  B, B  B 
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TWO-VARAIBLE FUNCTIONS: 

INHIBITION AND IMPLICATION 

Function name   f(A,B) 

——————————————————————              

Logical constants   0, 1   

         —          —     

Functions of one variable   A, A, B, B 

                      ——    ——— 

AND, OR, NAND, NOR  A•B, A+B, A•B, A+B 

     —             —    — —  

XOR (AB ), XNOR (AB) A B+A B,  A B+A B 

 

INHIBITION      A  B, B  A 

 

IMPLICATION   A  B, B  A 

42 

INHIBITION AND IMPLICATION 

Details on these four functions can be found in the texts. They 

play a role in formal logic, and less in digital technics. 

 

The four last functions: 

 

  A  B   A INHIBITS B 

  B  A   B INHIBITS A 

  A  B   IF A THEN B TOO 

  B  B   IF B THEN A TOO 
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TWO-VARIABLE FUNCTIONS: 

RECAPITULATION AND SUMMARY 

Function name   f(A,B) 

——————————————————————              

Logical constants   0, 1   

         —          —     

Functions of one variable   A, A, B, B 

                      ——    ——— 

AND, OR, NAND, NOR  A•B, A+B, A•B, A+B 

     —             —    — —  

XOR (AB ), XNOR (AB) A B+A B,  A B+A B 

 

INHIBITION      A  B, B  A 

 

IMPLICATION   A  B, B  A 

44 

BOOLEAN FUNCTIOS AND OPERATIONS 

OF TWO VARIABLES: A SUMMARY 

From the 16 possible two-variable Boolean functions  

 
6 can be considered as trivial  
 (2 of them are constants, 4 of them are in fact  
 one-variable functions) 
 
From the 10 non-trivial functions 
 2 (AND and OR) and their complementary  
 (AND-NOT and OR-NOT)  
 as well as the EXCLUSIVE-OR (antivalency)  
 and the EXCLUSIVE-NOR (equivalency) 
are of significance for the practice.  
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OUTLOOK: IMPLEMENTATION 74HC/HCT181 

 Total 16 arithmetic operations (add, subtract, plus, shift,  plus 12 others) 

• Total 16 logic operations (XOR, AND, NAND, NOR, OR, plus 11 others) 

• Capable of active-high and active-low operation 

46 

74HC/HCT181 ARITHMETIC LOGIC UNIT 
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ARITHMETIC LOGIC UNIT (ALU): 

MAIN TECHNICAL CHARCTERISTICS 

Typical characteristics (e.g. 74181 type): 

 

4-bit word length (input: A, B, output: F) 

16 arithmetic and 16 logic operations 

4 selector input, 1 mode change input   

Carry-in and carry out 

Reltion (A=B) output 

Carry look-ahead (G, P) output 
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WAYS TO SPECIFY LOGIC FUNCTIONS 

A logic function can be specified in various different ways. 

The possibilities listed below will be discussed here. 

 

  1. Truth table 

  2. Algebraic form 

  3. Graphic representation 

  4. Symbolic representation 

50 

SPECIFICATION OF LOGIC FUNCTION: 

TRUTH TABLE AND ALGEBRAIC FORM 

    i        A     B    C     Y 

   _________________    

   0        0     0     0     0 

   1        0     0     1     0    

   2        0     1     0     1  

   3        0     1     1     0  

   4        1     0     0     1 

   5        1     0     1     0 

   6        1     1     0     1 

   7        1     1     1     0 

   _________________ 

                             –   –      – –         –    
 Y(A,B,C) = ABC + ABC + ABC  

Unambiguous definition of a logic 

function: Prescription of the value 

of the function for each and all  

possible combinations of the 

independent variables. This is the 

thruth table.  

This kind of definition of a function 

is unambigouos.  
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SPECIFICATION OF FUNCTION IN 

ALGEBRAIC FORM: THE CANONIC FORM 

A logic function can specified using algebra in such a way 

that it is described by the symbols of logic operations 

(AND,  OR and NOT). 

 

The fist step of synthesis of combinational networks is the 

formulation of the relevant logic function on the basis of 

the problem/task to be solved. Usually the algebraic form 

is used.  

 

A logic function can be specified in several algebraic 

forms. Among the algebraic forms the normalized or 

canonic forms have specific relevance. 

52 

GRAPHIC REPRESENTATION  

Based on the truth table the values of logic functions can be 

graphically represented (mapped) in various forms of tables or 

maps (Karnaugh maps or Veitch diagrams). 

 

This kind of representation is very useful for the cases when 

the number of variables is limited (say less than five or six). 
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SYMBOLIC REPRESENTATION 

The logic operations can be designated by symbols (e.g. 

symbols on a drawing). In electronic logic systems each 

symbol represents a circuit performing a given logic 

operation.  

 

Therefore the such logic symbols give also information on the 

circuit implementation too. 

54 

CANONIC FORMS OF LOGIC FUNCTIONS 

The following presentation and discussion of canonic 

(algebraic) forms of logic functions is based on Arató’s text.  

 

Disjunctive canonic form or extended sum-of-product form. 

 

Conjunctive canonic form or extended product-of sum form. 
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COMPLETELY SPECIFIED LOGIC 

FUNCTION (LOGIC PROBLEM) 

A  B  C    F 

————— 

0   0   0    0   

0   0   1    0  

0   1   0    1 

0   1   1    1 

1   0   0    1 

1   0   1    0 

1   1   0    1 

1   1   1    0 

————— 

Completely determined logic function  

can be specified by listing all those input 

combinations for which the value of the 

function is F = 1,  

or listing all those for which F = 0.  

                —    —      —                — —            — 

F(ABC) = ABC + ABC + ABC + ABC 

 

or 

  ————       — — —       — —             — 

F(ABC) = A B C + A BC + ABC + ABC 

          — 

F and F both can be represented as sums 

of logic products (SOP). 

56 

TWO-LEVEL AND-OR REALIZATION 

(SSI MODULAR LOGIC) 

& 

& 

& 

& 

1 

                        —    —     —                 — —            —  

F(ABC) = ABC + ABC + ABC + ABC 
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PLA IMPEMENTATION 

PLA: a plane of AND gates followed with a plane of OR gates, 

interconnections can be established  by the user. 

A  B  C 
_     _ 

A B C 

_     

A B C 

    _ _ 

A B C 

      _ 

A B C  

 

          

            

       

 

 

 

       
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INCOMPLETELY  SPECIFIED  

LOGIC FUNCTION 

       

 

 

    

A  B  C    F 

————— 

0   0   0    1   

0   0   1    0  

0   1   0    1 

0   1   1    1 

1   0   0    - 

1   0   1    0 

1   1   0    - 

1   1   1    1 

————— 

Incompletely specified logic function, there are 

such input combinations to which no value of the 

function is specified. 

 

Her e.g. the truth table specifies four different 

but fully specified logic function, each of which 

solves the logic problem specified by the table. 

Assigning values to the two unspecified (don’t 

care) terms the function can be made completely 

specified in four different ways.  

 

The selection of the ”best” or most appropriate 

network should be made during the synthesis 

process.  



2019.09.07. 

30 

59 

INCOMPLETELY  SPECIFIED  

LOGIC FUNCTION 

       

 

 

    

A  B  C    F 

————— 

0   0   0    1   

0   0   1    0  

0   1   0    1 

0   1   1    1 

1   0   0    - 

1   0   1    0 

1   1   0    - 

1   1   1    1 

————— 

Algebraic notation: the don’t care terms are in 

parantheses: 

 

                        — — —      —   —       —  

F(ABC) = A B C + ABC + ABC + ABC  

 

               — —                 —  

    + (ABC) + (ABC) 

INCOMPLETELY  SPECIFIED  

LOGIC FUNCTION: EXAMPLE 

60 

Liquid level indicator using four sensors: 

Level indication: below a 

   between a and b 

   between b and c 

   between c and d 

   above b 

 

E.g. if dry = 0, wet = 1, then  abcd = 0 0 0 1 cannot occur! 
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CANONIC FORMS OF LOGIC FUNCTIONS 

In the synthesis of combinational networks it is expedient to 

start from the algebraic form. Because a logic function can 

have various different but equivalent algebraic form, it is 

necessary to use a special algebraic form which has the 

property  which cannot be attributed to any other equivalent 

form. Such algebraic form is called normal or canonic form 

of the logic function. 

 

There exist two such forms: 

 

 the disjunctive canonic form or minterm form 

and 

 the conjuctive canonic form or maxterm form. 
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DISJUNCTIVE CANONIC FORM 

(EXTENDED SUM-OF-PRODUCTS) 

The algebraic form  constructed from the truth table as logic 

sum of logic products (AND-OR) is (disjunctive) canonic form.  

 

Previous example, properties of the function: 

                          —   —      —                 — —            — 

 F(ABC) = ABC + ABC + ABC + ABC  

 

- Each product term represents an input variable combination 

for which the function is F = 1; 

- Each product term contains each and all variables either in 

asserted or in negated form. 

A  completely specified logic function has only one (unique) 

such algebraic form, the disjunctive canonic form. 
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MINTERM (DEFINITION) 

The terms of the disjunctive canonic form are called minterm 
  
 mi

n       here n is the number of independent variables,  
 

i (minterm index) is the decimal value of the binary number 

corresponding to the given combination of the  

independent variables. 

                         —   —      —                — —            — 

 F(ABC) = ABC + ABC + ABC + ABC 

(remember:     (2)       (3)       (4)       (6)     ) 

 

 F(ABC) = m2
3 + m3

3 + m4
3 + m6

3  

Other notation:                3 

   F =  (2,3,4,6) 

A  B  C    F 

————— 

0   0   0    0   

0   0   1    0  

0   1   0    1 

0   1   1    1 

1   0   0    1 

1   0   1    0 

1   1   0    1 

1   1   1    0 

64 

CONJUNCTIVE CANONIC FORM (1) 

To find the conjunctive canonic form,  at first consider the  

negated function from the truth table 

  ————       — — —      — —                —    

 F(ABC)= A B C + A B C + A B C + A B C 

  ———— 

 F(ABC) = m0
3 + m1

3 + m5
3 + m7

3 

 

The negated function consists of those 

minterms, which are not contained in the function. 

(Note that this is true only for completely  

specified functions!) 

A  B  C    F 

————— 

0   0   0    0   

0   0   1    0  

0   1   0    1 

0   1   1    1 

1   0   0    1 

1   0   1    0 

1   1   0    1 

1   1   1    0 
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CONJUNCTIVE CANONIC FORM (1) 

Based on De Morgan’s law the conjunctive canonic form of F 

can be obtained from the negated function by appropriate 

transformation resulting in a product-of-sums (POS) i.e. in a 

product of maxterms.  

 

       ————        ———————————————————— 

           ————      — — —      — —                —              

F(ABC) = F(ABC) = A B C + A B C + A B C + A B C = 

                          —    —                 —     —      —       —  

   (A + B + C) (A + B + C) (A + B + C) (A + B + C)  

 

 

  F(ABC) = M7
3M6

3M2
3M0

3 

A  B  C    F 

————— 

0   0   0    0   

0   0   1    0  

0   1   0    1 

0   1   1    1 

1   0   0    1 

1   0   1    0 

1   1   0    1 

1   1   1    0 
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CONNECTION BETWEEN MINTERMS 

AND MAXTERMS  

Original function, disjunctive canonic form (SOP)  

 

 F(ABC) = m2
3 + m3

3 + m4
3 + m6

3  

 

Negated function, disjunctive form (index i) 

  ———— 

 F(ABC) = m0
3 + m1

3 + m5
3 + m7

3 

 

Original function, conjunctive canonic form (POS),  

(index I = 23 - i) 

 

  F(ABC) = M7
3M6

3M2
3M0

3 
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MINTERMS AND MAXTERMS 

Relationship between the  minterm indexes i of the negated 

function and the maxterm I of the asserted function (written 

for the case of three variables) 

 

   i + I = 7 = 23 - 1 

 

For n-variable function 

 

   i + I = 2n -1 
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CONCEPTUAL LOGIC DIAGRAM AND 

TWO-LEVEL REALIZATION 

All logic functions can be specified using AND, OR and NOT 

(inverter) operations. Not including the inverters (NOT) to 

obtain the negated values of the input variables, both 

canonic forms (extended SOP and POS) can specified  and 

implemented by two-level AND-OR or OR-AND gate 

networks respectively (conceptual logic diagram).  

 

Because the AND and OR (and the NOT too) can be 

implemented using either only NAND or only NOR gates, 

then based on the  respective canonic forms all logic 

functions can be implemented with homogeneous two-level 

NAND gate or NOR gate networks.  
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TWO-LEVEL AND-OR IMPLEMENTATION 

OF F(A,B,C) 

& 

& 

& 

& 

1 

                        —   —      —                         

F(ABC) = ABC + ABC 

        — —            — 

+ ABC + ABC 

This represents a (two-level 

AND-OR) conceptual logic 

diagram of the function, and 

simultaneously a two level AND-

OR implementation. 

70 

TWO-LEVEL HOMOGENEOUS NAND 

GATE IMPLEMENTATION OF F(A,B,C) 

& 

& 

& 

& 

& 

                        —   —      —                         

F(ABC) = ABC + ABC 

        — —            — 

+ ABC + ABC 

o 

o 

o 

o 

o 

This is the two-level 

homogeneous NAND gate 

based implementation.  
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TWO-LEVEL OR-AND IMPLEMENTATION 

OF F(A,B,C) 

1 

1 

1 

1 

& 

                                                            —   —          —   —    —    —                        

F(ABC) = (A+B+C)(A+B+C)(A+B+C)(A+B+C) 

This represents a (two-level OR-

AND)) conceptual logic diagram of 

the function, and simultaneously a 

two level OR-AND implementation. 
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TWO LEVEL HOMOGENEOUS NOR GATE 

IMPLEMENTATION OF F(A,B,C) 

1 

1 

1 

1 

1 

o 

o 

o 

o 

o 

                                                            —   —          —   —    —    —     

F(ABC) = (A+B+C)(A+B+C)(A+B+C)(A+B+C) 

This is the two-level 

homogeneous NOR gate based 

implementation.  
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CONCEPTUAL LOGIC DIAGRAM AND 

TWO-LEVEL REALIZATION: EMPHASIS 

All logic functions can be specified using AND, OR and NOT 

(inverter) operations. Not including the inverters (NOT) to 

obtain the negated values of the input variables, both 

canonic forms (extended SOP and POS) can specified  and 

implemented by two-level AND-OR or OR-AND gate 

networks respectively (conceptual logic diagram).  

 

Because the AND and OR (and the NOT too) can be 

implemented using either only NAND or only NOR gates, 

then based on the  respective canonic forms all logic 

functions can be implemented with homogeneous two-level 

NAND gate or NOR gate networks.  
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REVIEW QUESTIONS 

1. Consider each of the following statements and for each indicate for 

which logic gate or gates (AND, OR, NAND, NOR) the statement is true: 

 

(a) Output is high only if all inputs are low. 

(b) Output will be low if the inputs are at different levels. 

(c) Output is high when both inputs are high. 

(d) Output is low only if all inputs are high. 

(e) All low inputs produce a high output. 

 

(Adapted from: Ronald J. Tocci, Digital Systems, Prentice Hall, 

London,1980.) 
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REVIEW QUESTIONS 

2. Write both sum-of-products and product-of-sums Boolean 

expressions for (a) a two-input AND gate, (b) a two-input NAND-gate, 

(c) a two-input EX-OR gate and (d) a two-input NOR gate from their 

respective truth tables. 

 

3. Interpret and explain the following concepts: 

 

(standard/extended) sum-of-product form, also known as 

(minterm/disjunctive) canonical form 

(standard/extended) product-of-sum form, also known as 

(maxterm/conjunctive) canonical form 
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REVIEW QUESTIONS 

4. Consider each of the following statements and for each indicate for 

which logic gate or gates (AND, OR, NAND, NOR) the statement is true: 

 

(a) Output is high only if all inputs are low. 

(b) Output will be low if the inputs are at different levels. 

(c) Output is high when both inputs are high. 

(d) Output is low only if all inputs are high. 

(e) All low inputs produce a high output. 

 

(Adapted from: Ronald J. Tocci, Digital Systems, Prentice Hall, 

London,1980.) 
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PROBLEMS AND EXERCISES 

1. Transform and simplify the Boolean expressions given below using 

algebraic methods. The final result(s) should be in the form of sum of 

products of logical variables. 

  

              _           _  

(A + B) (B + C) (A + C)  (ANSWER: A C + B C) 

  

  

(X + Y Z) (X Y + X Y)  (ANSWER : X Y Z) 

  

 _                      _                                                    _  

(X + Z) (X Y + X Z)  (ANSWER: X Z + X Y Z) 

  

 ___          ___                                                       _     _  _         _ 

(X Y + A) (X Z + Y)  (ANSWER: X + Y Z + A Z + A Y) 
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PROBLEMS AND EXERCISES 

2. Design a logic circuit with two inputs, A and B, and two outputs, X and Y, 

so that it operates as follows: 

 

(1) X and Y are both HIGH as long as A is HIGH, regardless of the level of 

B. 

(2) If A pulses LOW, the LOW will appear at X if B=0 or at Y if B=1. 

 

3. Find the canonic algebraic forms of the logic function 

  

 F(A,B,C) = A B + A C 

  

4. List the minterm and maxterm indices of the logic function below 

  

                    _  _  _    _  _       _     _        _  

 F(A B C) = A B C + A B C + A B C + A B C 
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PROBLEMS AND EXERCISES 

5. Four large tanks at a chemical plant contain different liquids being 

heated. Liquid-level sensors are being used to detect whenever the level 

in tank A and B rise above a predetermined level. Temperature sensors 

in tanks C and D detect when the temperature in these tanks drop below 

a prescribed temperature limit. Assume that the liquid-level sensor 

outputs A and B are low when the level is satisfactory and high when the 

level is to high. Also, the temperature-sensor outputs C and D are low 

when the temperature is satisfactory and high when the temperature is 

too low. 

Design a logic circuit that will detect whenever the level in tank A or tank 

B is too high at the same time that the temperature in either tank C or 

tank  is too low. 

 

(Adapted from R. J. Tocci: Digital Systems, Principles and Applications)  
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       END 

 
 


