
2019.09.07.

1

1

DIGITAL TECHNICS I

Dr. Bálint Pődör

Óbuda University, Microelectronics and Technology Institute

 3. LECTURE: LOGIC (BOOLEAN)

FUNCTIONS AND APPLICATIONS

 1st year BSc course 1st (Autumn) term 2018/2019

2

This is the

3. LECTURE…

But before starting with the new material, let’s repeat a few

important points from the previous lecture…

…because as the Latin proverb says

 Repetitio est mater studiorum

2019.09.07.

2

3

AXIOMS OF BOOLEAN ALGEBRA

1. Boolean algebra is defined on a set of two-valued

 elements

2. Each element of the set has its complementary also

 belonging to the set

3. Logic operations: conjunction (logic AND) and

 disjunction (logic OR)

4. Logic operations are commutative, associative, and

 distributive

5. Special elements of the set are the unity (its value is

 always 1) and the zero (its value is always 0)

Repetitio est mater studiorum

4

BOOLEAN THEOREMS

 commutative law

 A • B = B • A

 A + B = B + A

 associative law

 A • (B • C) = (A • B) • C = A • B • C

 A + (B + C) = (A + B)+ C = A + B + C

 distributive law

 A • (B + C) = A • B + A • C

 A + (B • C) = (A + B) • (A + C)

Repetitio est mater studiorum

2019.09.07.

3

5

DE MORGAN’S THEOREM

De Morgan’s theorem occupies an important place in the logic

(Boolean) algebra

 –––––– — —

 A + B = A • B

 –––––– — —

 A • B = A + B

The negation of a logic sum (OR) or a logic product (AND)

can be performed by negating (complementing) the logic

operands and interchanging the logic operations (in place of

OR put AND, in place of AND put OR).

Repetitio est mater studiorum

6

KEY APPLICATION OF

DE MORGAN THEOREM

AND operation using OR and NOT

 ————

 — —

 A • B = (A + B)

OR operation using AND and NOT

 ————

 — —

 A + B = (A • B)

Repetitio est mater studiorum

2019.09.07.

4

7

SHANNON’S GENERALIZATION OF

DE MORGAN’S THEOREMS

The De Morgan-Shannon’s theorem refers to the logic or

Boolean functions constructed using logic multiplications

and additions

 _____________ _ _ _

 f(A, B, C, ..., +, •) = f(A, B, C, ..., •, +)

The negation of the function can be performed by

negating each variable and replacing all logic

summations (ORs) with logic multiplications (ANDs) and

replacing all logic multiplications (ANDs) with logic

summations (ORs).

Repetitio est mater studiorum

8

COMBINATIONAL CIRCUITS IN

PRACTICE

From De Morgan’s theorem it follows:

Any two-level AND-OR

(sum-of-products) network

can be implemented with

two-level NAND-NAND network.

Any two-level OR-AND

(product-of-sums) network

can be implemented with

two-level NOR-NOR network.

Repetitio est mater studiorum

 AND-OR OR-AND

sum-of-products product-of-sums

 NAND-NAND NOR-NOR

2019.09.07.

5

9

 Some addenda …

NOTE ON SYMBOLS

Hungarian standard

2019.09.07.

6

ALGEBRAIC TRANSFORMATION OF

LOGIC EXPRESSIONS: PRACTICE
Bring to a simpler form the following expressions:

 _ _

 Y = AB + AB + ABCD Answer: ?

 ____ ________

 Y = ABC + A + B + C Answer: ?

 _ _ _

Y = CBA + CBA + CBA + CBA Answer: ?

Note: the last function is called the (3-variable) majority

function, it also gives the carry-out in a 1-bit binary full adder

(operands A and B, carry-in C).

It is to emphasized that the rules of manipulations in logic

algebra are not the same as in the common algebra!

ALGEBRAIC TRANSFORMATION OF

LOGIC EXPRESSIONS: PRACTICE
Bring to a simpler form the following expressions:

 _ _

 Y = AB + AB + ABCD Answer: Y = A

 ____ ________ _ _ _

 Y = ABC + A + B + C Answer: Y = A + B + C

 _ _ _

Y = CBA + CBA + CBA + CBA Answer: = AB + BC + CA

Note: the last function is called the (3-variable) majority

function, it also gives the carry-out in a 1-bit binary full adder

(operands A and B, carry-in C).

It is to emphasized that the rules of manipulations in logic

algebra are not the same as in the common algebra!

2019.09.07.

7

ALGEBRAIC FORM OF LOGIC FUNCTION

GIVEN BY ITS TRUTH TABLE: EXAMPLE

ROW A B C Y

 0 0 0 0 0

 1 0 0 1 0

 2 0 1 0 1

 3 0 1 1 0

 4 1 0 0 1

 5 1 0 1 0

 6 1 1 0 1

 7 1 1 1 0

The algebraic form of the logic

function Y(A,B,C) can be read off

from the column Y, and can be

written as the disjunction of three

conjunctions (where Y = 1):

 – – – – –

Y(A,B,C) = ABC + ABC + ABC

Using appropriate factorings
 – – – – –
Y = (AB + A(B + B))C = (AB + A)C

 – – – – –
Y(A,B,C) = (A + A)(A + B)C = (A + B)C = AC + BC

It can be seen that several equivalent algebraic forms exist!
The last form cannot be reduced further, and is the same which
can be obtained by using Karnaugh map minimization.

REALIZATION OF LOGIC FUNCTION

Both the original function
 – – – – –
 Y(A,B,C) = ABC + ABC + ABC

and the reduced (minimized) form
 – –
 Y(A,B,C) = AC + BC

can be realized with two-level AND-OR gate network, or

based on De Morgan’s theorem, with two-level NAND-

NAND gate network. The first version requires 4 gates

and 12 pins (gate inputs), the second version requires 3

gate and 6 pins (gate inputs).

2019.09.07.

8

HOMOGENOUS NAND GATE CIRCUIT

The two-level homogeneous NAND gate realization follows

from a transformation from the AND-OR expression based

on De Morgans’s theorem.

 ___ ___

 _ _ – –

 Y(A,B,C) = AC + BC = (AC) (BC)

&
X

Y

Z

&
X

Y

Z

&
X

Y

Z

A

B
_

C

_

C
Y

AND-OR
NAND-NAND

16

TECHNICAL ASPECTS: MAPPING FROM

PHYSIACL WORLD TO BINARY WORLD

Technology State 0 State 1

Relay logic Circuit Open Circuit Closed
CMOS logic 0.0-1.0 volts 2.0-3.0 volts
Transistor transistor logic (TTL) 0.0-0.8 volts 2.0-5.0 volts
Fiber Optics Light off Light on
Dynamic RAM Discharged capacitor Charged capacitor
Nonvolatile memory (erasable) Trapped electrons No trapped electrons
Programmable ROM Fuse blown Fuse intact
Bubble memory No magnetic bubble Bubble present
Magnetic disk No flux reversal Flux reversal
Compact disc No pit Pit

2019.09.07.

9

17

TECHNICAL ASPECTS: NOISE IN

ANALOG AND DIGITAL SYSTEMS

18

TECNICAL: ELEMENTARY SWITCHES

2019.09.07.

10

19

LOGIC (BOOLEAN) FUNCTIONS

1. Logic functions: fundamental concepts, general

properties

2. Two-variable Boolean functions: a summary

3. Fully specified and incompletely specified logic functions

and logic problems

4. Canonic algebraic forms of logic functions (disjunctive

and conjunctive canonic forms).

5. The concept of minterm and maxterm, their properties

20

BOOLEAN FUNCTIONS

The one- and two-variable operations of Boolean algebra can

be considered as functions of one and two variables,

respectively.

In the case of generalized functions the number of variables is

extended only.

n-variable Boolean or logic function

 Z = f(X1, X2,Xn)

The particular truth value of Z is defined by the f function.

2019.09.07.

11

21

LOGIC (BOOLEAN) FUNCTIONS AND

COMBINATIONAL NETWORKS

To each logic function a combinational network can be given,

and vice versa to each logic problem and combinational

network an appropriate logic function can connected.

With the help of logic function the operation of combinational

networks can be unequivocally described.

For this reason it is necessary to get acquainted in detail with

the properties of logic functions.

What follows is detailed survey of one- and two-variable logic

functions.

22

ONE-VARIABLE LOGIC FUNCTIONS

In the case of one variable four Boolean functions are possible.

A fo
1(A) f1

1(A) f2
1(A) f3

1(A)

————————————————————————

0 0 0 1 1

1 0 1 0 1

————————————————————————

In the fi
n notation the index n denotes the number of variables,

the index i denotes the decimal value of the binary number

represented in the corresponding column.

 _

Two logic constant 0, 1, and two ”real” functions A, A.

2019.09.07.

12

23

TWO-VARIABLE LOGIC FUNCTIONS

Classification and properties of two-variable Boolean

functions.

In the case of two variables the number of possible input

combinations is 22 = 4, therefore the number of possible two-

variable functions is 24 = 16. Each function describes a

single or complex logic operation.

Generalization: n variable, possible input combinations

 k = 2n, the number of possible n-variable functions is 2k,

(exponential growth!).

E.g. for n = 3 256,

 for n = 4 65 536,

 for n = 5 4 294 967 296, …, etc.

24

TWO-VARIABLE BOOLEAN FUNCTIONS

A B fo
2 f1

2 f2
2..... f8

2 f14
2 f15

2

—————————————————————

0 0 0 1 0 0 0 1

0 1 0 0 1 0 1 1

1 0 0 0 0 0 1 1

1 1 0 0 0 1 1 1

—————————————————————

Notation: fi
n .

Index i: decimal value of the binary number read from the

column (LSB upper row).

Functions with indices i and 15-i are complements of each

other.

Cf. Rőmer’s text p. 9, or Zsom’s text (I) p. 71.

2019.09.07.

13

25

CLASSIFICATION OF BOOLEAN

FUNCTIONS OF TWO VARIABLES

Function name f(A,B)

——————————————————————

Logical constants 0, 1

 — —

Functions of one variable A, A, B, B

 —— ———

AND, OR, NAND, NOR A•B, A+B, A•B, A+B

 — — — —

XOR (AB), XNOR (AB) A B+A B, A B+A B

INHIBITION A  B, B  A

IMPLICATION A  B, B  A

26

LOGIC CONSTANTS

A B fo
2 f1

2 f2
2.... f14

2 f15
2

———————————————

0 0 0 1 0 0 1

0 1 0 0 1 1 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

———————————————

fo
2 zero-function, its value is always 0, independently of

the variables.

f15
2 unity-function, its value is always 1, independently

of the variables.

These are the logic constants.

2019.09.07.

14

27

ONE-VARIABLE FUNCTIONS

 f12
2 (A,B) = A

 —

 f3
2 (A,B) = A

 f10
2 (A,B) = B

 —

 f5
2 (A,B) = B

These are not true two-variable functions but one-variable

functions. They represent the true and negated values of

the variables.

28

BOOLEAN FUNCTIONS OF TWO VARIABLE

V
A

G
Y 1

A B

0 0

0 1

1 0

1 1

f
0

f
1

f
2

f
3

f
4

f
5

f
6

f
7

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

f
8

f
9

f
10

f
11

f
12

f
13

f
14

f
15

1

0

0

0

1

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

0

É
S É
S

-N
E

M

V
A

G
Y

-N
E

M

A AB B

Egyargumentumos

Egyargumentumos

Logikai konstansok

AND

NAND

OR NOR

Boolean constants

One variable

One variable

2019.09.07.

15

29

LOGIC FUNCTIONS:

AND, OR, NAND, NOR

 A B f1
2 f7

2..... f8
2 f14

2

 ———————————————

 0 0 1 1 0 0

 0 1 0 1 0 1

 1 0 0 1 0 1

 1 1 0 0 1 1

 ———————————————

 ——— ——
 A+B AB AB A+B

 NOR NAND AND OR

30

TWO-VARAIBLE FUNCTIONS:

ANTIVALENCY AND EQUVALENCY

Function name f(A,B)

——————————————————————

Logical constants 0, 1

 — —

Functions of one variable A, A, B, B

 —— ———

AND, OR, NAND, NOR A•B, A+B, A•B, A+B

 — — — —

XOR (AB), XNOR (AB) A B+A B, A B+A B

INHIBITION A  B, B  A

IMPLICATION A  B, B  A

2019.09.07.

16

31

ANTIVALENCY (XOR)

 EQUIVALENCY (XNOR)

A B f6
2 f9

2

—————— Antivalency (exclusive OR, XOR, A  B)

0 0 0 1

0 1 1 0 Equivalency (coincidence, XNOR, A  B)

1 0 1 0

1 1 0 1

——————

 — —

XOR f6
2 = AB = A B+A B,

 — —

XNOR f9
2 = AB = A B+A B

The two functions are complementary: AB = AB

32

ANTIVALENCY, EXCLUSIVE-OR

A B f6
2

———— _ _

0 0 1 f6
2 = A B + A B

0 1 1

1 0 1 usual notation:

1 1 0

———— f6
2 = A  B

ANTIVALENCY or EXCLUSIVE-OR, the function is1, if ane

of the variables 1 while the other is 0, and is 0, if both

variables are simultaneously 0 or 1.

Symbol Time diagram

2019.09.07.

17

33

EQUIVALENCY, EXCLUSIVE-NOR

A B f9
2

———— _ _

0 0 1 f9
2 = AB + AB

0 1 0

1 0 0 usual symbol:

1 1 1

———— f9
2 = A  B

EQUIVALENCY (EXCLUSIVE-NOR), the function is1, if both

variables ar simultaneously 0 or 1, and is 0 if one of the

variables is 0 and the other is 1.

Symbol Time diagram

34

ANTIVALENCY

 A B f6
2 The f6

2 = A  B operation realizes

 ————— also mathematical operation of binary

 0 0 1 addition of two bits without carry

 0 1 1 (binary half-adder).

 1 0 1

 1 1 0

 —————

The antivalency operation or gate can also be considered as

a digital 1-bit comparator.

By appropriate chaining n-bit comparators can be

constructed.

2019.09.07.

18

35

EXLUSICE-OR: IMPLEMENTATION

The EXCLUSIVE-OR operation can be implemented

ousing AND, OR gates and inverters (NOT) based on the

Boolean equation.

Or it can be implemented, after appropriate transformation

using the universal NAND or NOR elements.

In the TTL and CMOS modular logic families EXCLUSIVE-

OR gates are also available.

36

EXCLUSIVE-OR IMPLEMENTATIONS

 ———————
 —— ——
 — — — —
 AB = A B+A B = (A B)(A B)

It is supposed that the negated imput variables are available..

2019.09.07.

19

37

EXCLUSIVE-NOR: EQUIVALENCY

 — —

 AB = A B+A B

According to the truth table XNOR is the complemenet

(negated) of XOR.

When extending to more the two variables, several different

definitions are used! E.g. According to MSz (Hungarian

Standards) for three variables the value of XNOR is 1 only

for the input combinations 000 and 111, and is 0 for all other

combination.

The other usual definition assigns a value of 1 to the output

if even number of inputs is 1.

38

EQUIVALENCY (XNOR) IMPLEMENTATIONS

2019.09.07.

20

39

XOR, XNOR REALIZATIONS WITH NOR

ANTIVALENCY (XOR) and EQQUIVALENCY (XNOR)

realizations with homogeneous NOR gate circuitry.

40

TWO-VARAIBLE FUNCTIONS:

INHIBITION AND IMPLICATION

Function name f(A,B)

——————————————————————

Logical constants 0, 1

 — —

One-variable functions A, A, B, B

 —— ———

AND, OR, NAND, NOR A•B, A+B, A•B, A+B

 — — — —

XOR (AB), XNOR (AB) A B+A B, A B+A B

INHIBITION A  B, B  A

IMPLICATIION A  B, B  B

2019.09.07.

21

41

TWO-VARAIBLE FUNCTIONS:

INHIBITION AND IMPLICATION

Function name f(A,B)

——————————————————————

Logical constants 0, 1

 — —

Functions of one variable A, A, B, B

 —— ———

AND, OR, NAND, NOR A•B, A+B, A•B, A+B

 — — — —

XOR (AB), XNOR (AB) A B+A B, A B+A B

INHIBITION A  B, B  A

IMPLICATION A  B, B  A

42

INHIBITION AND IMPLICATION

Details on these four functions can be found in the texts. They

play a role in formal logic, and less in digital technics.

The four last functions:

 A  B A INHIBITS B

 B  A B INHIBITS A

 A  B IF A THEN B TOO

 B  B IF B THEN A TOO

2019.09.07.

22

43

TWO-VARIABLE FUNCTIONS:

RECAPITULATION AND SUMMARY

Function name f(A,B)

——————————————————————

Logical constants 0, 1

 — —

Functions of one variable A, A, B, B

 —— ———

AND, OR, NAND, NOR A•B, A+B, A•B, A+B

 — — — —

XOR (AB), XNOR (AB) A B+A B, A B+A B

INHIBITION A  B, B  A

IMPLICATION A  B, B  A

44

BOOLEAN FUNCTIOS AND OPERATIONS

OF TWO VARIABLES: A SUMMARY

From the 16 possible two-variable Boolean functions

6 can be considered as trivial
 (2 of them are constants, 4 of them are in fact
 one-variable functions)

From the 10 non-trivial functions
 2 (AND and OR) and their complementary
 (AND-NOT and OR-NOT)
 as well as the EXCLUSIVE-OR (antivalency)
 and the EXCLUSIVE-NOR (equivalency)
are of significance for the practice.

2019.09.07.

23

45

OUTLOOK: IMPLEMENTATION 74HC/HCT181

 Total 16 arithmetic operations (add, subtract, plus, shift, plus 12 others)

• Total 16 logic operations (XOR, AND, NAND, NOR, OR, plus 11 others)

• Capable of active-high and active-low operation

46

74HC/HCT181 ARITHMETIC LOGIC UNIT

2019.09.07.

24

47

48

ARITHMETIC LOGIC UNIT (ALU):

MAIN TECHNICAL CHARCTERISTICS

Typical characteristics (e.g. 74181 type):

4-bit word length (input: A, B, output: F)

16 arithmetic and 16 logic operations

4 selector input, 1 mode change input

Carry-in and carry out

Reltion (A=B) output

Carry look-ahead (G, P) output

2019.09.07.

25

49

WAYS TO SPECIFY LOGIC FUNCTIONS

A logic function can be specified in various different ways.

The possibilities listed below will be discussed here.

 1. Truth table

 2. Algebraic form

 3. Graphic representation

 4. Symbolic representation

50

SPECIFICATION OF LOGIC FUNCTION:

TRUTH TABLE AND ALGEBRAIC FORM

 i A B C Y

 0 0 0 0 0

 1 0 0 1 0

 2 0 1 0 1

 3 0 1 1 0

 4 1 0 0 1

 5 1 0 1 0

 6 1 1 0 1

 7 1 1 1 0

 – – – – –
 Y(A,B,C) = ABC + ABC + ABC

Unambiguous definition of a logic

function: Prescription of the value

of the function for each and all

possible combinations of the

independent variables. This is the

thruth table.

This kind of definition of a function

is unambigouos.

2019.09.07.

26

51

SPECIFICATION OF FUNCTION IN

ALGEBRAIC FORM: THE CANONIC FORM

A logic function can specified using algebra in such a way

that it is described by the symbols of logic operations

(AND, OR and NOT).

The fist step of synthesis of combinational networks is the

formulation of the relevant logic function on the basis of

the problem/task to be solved. Usually the algebraic form

is used.

A logic function can be specified in several algebraic

forms. Among the algebraic forms the normalized or

canonic forms have specific relevance.

52

GRAPHIC REPRESENTATION

Based on the truth table the values of logic functions can be

graphically represented (mapped) in various forms of tables or

maps (Karnaugh maps or Veitch diagrams).

This kind of representation is very useful for the cases when

the number of variables is limited (say less than five or six).

2019.09.07.

27

53

SYMBOLIC REPRESENTATION

The logic operations can be designated by symbols (e.g.

symbols on a drawing). In electronic logic systems each

symbol represents a circuit performing a given logic

operation.

Therefore the such logic symbols give also information on the

circuit implementation too.

54

CANONIC FORMS OF LOGIC FUNCTIONS

The following presentation and discussion of canonic

(algebraic) forms of logic functions is based on Arató’s text.

Disjunctive canonic form or extended sum-of-product form.

Conjunctive canonic form or extended product-of sum form.

2019.09.07.

28

55

COMPLETELY SPECIFIED LOGIC

FUNCTION (LOGIC PROBLEM)

A B C F

—————

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

—————

Completely determined logic function

can be specified by listing all those input

combinations for which the value of the

function is F = 1,

or listing all those for which F = 0.

 — — — — — —

F(ABC) = ABC + ABC + ABC + ABC

or

 ———— — — — — — —

F(ABC) = A B C + A BC + ABC + ABC

 —

F and F both can be represented as sums

of logic products (SOP).

56

TWO-LEVEL AND-OR REALIZATION

(SSI MODULAR LOGIC)

&

&

&

&

1

 — — — — — —

F(ABC) = ABC + ABC + ABC + ABC

2019.09.07.

29

57

PLA IMPEMENTATION

PLA: a plane of AND gates followed with a plane of OR gates,

interconnections can be established by the user.

A B C
_ _

A B C

_

A B C

 _ _

A B C

 _

A B C

    

  

  







   

58

INCOMPLETELY SPECIFIED

LOGIC FUNCTION

A B C F

—————

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 -

1 0 1 0

1 1 0 -

1 1 1 1

—————

Incompletely specified logic function, there are

such input combinations to which no value of the

function is specified.

Her e.g. the truth table specifies four different

but fully specified logic function, each of which

solves the logic problem specified by the table.

Assigning values to the two unspecified (don’t

care) terms the function can be made completely

specified in four different ways.

The selection of the ”best” or most appropriate

network should be made during the synthesis

process.

2019.09.07.

30

59

INCOMPLETELY SPECIFIED

LOGIC FUNCTION

A B C F

—————

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 -

1 0 1 0

1 1 0 -

1 1 1 1

—————

Algebraic notation: the don’t care terms are in

parantheses:

 — — — — — —

F(ABC) = A B C + ABC + ABC + ABC

 — — —

 + (ABC) + (ABC)

INCOMPLETELY SPECIFIED

LOGIC FUNCTION: EXAMPLE

60

Liquid level indicator using four sensors:

Level indication: below a

 between a and b

 between b and c

 between c and d

 above b

E.g. if dry = 0, wet = 1, then abcd = 0 0 0 1 cannot occur!

2019.09.07.

31

61

CANONIC FORMS OF LOGIC FUNCTIONS

In the synthesis of combinational networks it is expedient to

start from the algebraic form. Because a logic function can

have various different but equivalent algebraic form, it is

necessary to use a special algebraic form which has the

property which cannot be attributed to any other equivalent

form. Such algebraic form is called normal or canonic form

of the logic function.

There exist two such forms:

 the disjunctive canonic form or minterm form

and

 the conjuctive canonic form or maxterm form.

62

DISJUNCTIVE CANONIC FORM

(EXTENDED SUM-OF-PRODUCTS)

The algebraic form constructed from the truth table as logic

sum of logic products (AND-OR) is (disjunctive) canonic form.

Previous example, properties of the function:

 — — — — — —

 F(ABC) = ABC + ABC + ABC + ABC

- Each product term represents an input variable combination

for which the function is F = 1;

- Each product term contains each and all variables either in

asserted or in negated form.

A completely specified logic function has only one (unique)

such algebraic form, the disjunctive canonic form.

2019.09.07.

32

63

MINTERM (DEFINITION)

The terms of the disjunctive canonic form are called minterm

 mi

n here n is the number of independent variables,

i (minterm index) is the decimal value of the binary number

corresponding to the given combination of the

independent variables.

 — — — — — —

 F(ABC) = ABC + ABC + ABC + ABC

(remember: (2) (3) (4) (6))

 F(ABC) = m2
3 + m3

3 + m4
3 + m6

3

Other notation: 3

 F =  (2,3,4,6)

A B C F

—————

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

64

CONJUNCTIVE CANONIC FORM (1)

To find the conjunctive canonic form, at first consider the

negated function from the truth table

 ———— — — — — — —

 F(ABC)= A B C + A B C + A B C + A B C

 ————

 F(ABC) = m0
3 + m1

3 + m5
3 + m7

3

The negated function consists of those

minterms, which are not contained in the function.

(Note that this is true only for completely

specified functions!)

A B C F

—————

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

2019.09.07.

33

65

CONJUNCTIVE CANONIC FORM (1)

Based on De Morgan’s law the conjunctive canonic form of F

can be obtained from the negated function by appropriate

transformation resulting in a product-of-sums (POS) i.e. in a

product of maxterms.

 ———— ————————————————————

 ———— — — — — — —

F(ABC) = F(ABC) = A B C + A B C + A B C + A B C =

 — — — — — —

 (A + B + C) (A + B + C) (A + B + C) (A + B + C)

 F(ABC) = M7
3M6

3M2
3M0

3

A B C F

—————

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

66

CONNECTION BETWEEN MINTERMS

AND MAXTERMS

Original function, disjunctive canonic form (SOP)

 F(ABC) = m2
3 + m3

3 + m4
3 + m6

3

Negated function, disjunctive form (index i)

 ————

 F(ABC) = m0
3 + m1

3 + m5
3 + m7

3

Original function, conjunctive canonic form (POS),

(index I = 23 - i)

 F(ABC) = M7
3M6

3M2
3M0

3

2019.09.07.

34

67

MINTERMS AND MAXTERMS

Relationship between the minterm indexes i of the negated

function and the maxterm I of the asserted function (written

for the case of three variables)

 i + I = 7 = 23 - 1

For n-variable function

 i + I = 2n -1

68

CONCEPTUAL LOGIC DIAGRAM AND

TWO-LEVEL REALIZATION

All logic functions can be specified using AND, OR and NOT

(inverter) operations. Not including the inverters (NOT) to

obtain the negated values of the input variables, both

canonic forms (extended SOP and POS) can specified and

implemented by two-level AND-OR or OR-AND gate

networks respectively (conceptual logic diagram).

Because the AND and OR (and the NOT too) can be

implemented using either only NAND or only NOR gates,

then based on the respective canonic forms all logic

functions can be implemented with homogeneous two-level

NAND gate or NOR gate networks.

2019.09.07.

35

69

TWO-LEVEL AND-OR IMPLEMENTATION

OF F(A,B,C)

&

&

&

&

1

 — — —

F(ABC) = ABC + ABC

 — — —

+ ABC + ABC

This represents a (two-level

AND-OR) conceptual logic

diagram of the function, and

simultaneously a two level AND-

OR implementation.

70

TWO-LEVEL HOMOGENEOUS NAND

GATE IMPLEMENTATION OF F(A,B,C)

&

&

&

&

&

 — — —

F(ABC) = ABC + ABC

 — — —

+ ABC + ABC

o

o

o

o

o

This is the two-level

homogeneous NAND gate

based implementation.

2019.09.07.

36

71

TWO-LEVEL OR-AND IMPLEMENTATION

OF F(A,B,C)

1

1

1

1

&

 — — — — — —

F(ABC) = (A+B+C)(A+B+C)(A+B+C)(A+B+C)

This represents a (two-level OR-

AND)) conceptual logic diagram of

the function, and simultaneously a

two level OR-AND implementation.

72

TWO LEVEL HOMOGENEOUS NOR GATE

IMPLEMENTATION OF F(A,B,C)

1

1

1

1

1

o

o

o

o

o

 — — — — — —

F(ABC) = (A+B+C)(A+B+C)(A+B+C)(A+B+C)

This is the two-level

homogeneous NOR gate based

implementation.

2019.09.07.

37

73

CONCEPTUAL LOGIC DIAGRAM AND

TWO-LEVEL REALIZATION: EMPHASIS

All logic functions can be specified using AND, OR and NOT

(inverter) operations. Not including the inverters (NOT) to

obtain the negated values of the input variables, both

canonic forms (extended SOP and POS) can specified and

implemented by two-level AND-OR or OR-AND gate

networks respectively (conceptual logic diagram).

Because the AND and OR (and the NOT too) can be

implemented using either only NAND or only NOR gates,

then based on the respective canonic forms all logic

functions can be implemented with homogeneous two-level

NAND gate or NOR gate networks.

74

REVIEW QUESTIONS

1. Consider each of the following statements and for each indicate for

which logic gate or gates (AND, OR, NAND, NOR) the statement is true:

(a) Output is high only if all inputs are low.

(b) Output will be low if the inputs are at different levels.

(c) Output is high when both inputs are high.

(d) Output is low only if all inputs are high.

(e) All low inputs produce a high output.

(Adapted from: Ronald J. Tocci, Digital Systems, Prentice Hall,

London,1980.)

2019.09.07.

38

75

REVIEW QUESTIONS

2. Write both sum-of-products and product-of-sums Boolean

expressions for (a) a two-input AND gate, (b) a two-input NAND-gate,

(c) a two-input EX-OR gate and (d) a two-input NOR gate from their

respective truth tables.

3. Interpret and explain the following concepts:

(standard/extended) sum-of-product form, also known as

(minterm/disjunctive) canonical form

(standard/extended) product-of-sum form, also known as

(maxterm/conjunctive) canonical form

76

REVIEW QUESTIONS

4. Consider each of the following statements and for each indicate for

which logic gate or gates (AND, OR, NAND, NOR) the statement is true:

(a) Output is high only if all inputs are low.

(b) Output will be low if the inputs are at different levels.

(c) Output is high when both inputs are high.

(d) Output is low only if all inputs are high.

(e) All low inputs produce a high output.

(Adapted from: Ronald J. Tocci, Digital Systems, Prentice Hall,

London,1980.)

2019.09.07.

39

77

PROBLEMS AND EXERCISES

1. Transform and simplify the Boolean expressions given below using

algebraic methods. The final result(s) should be in the form of sum of

products of logical variables.

 _ _

(A + B) (B + C) (A + C) (ANSWER: A C + B C)

(X + Y Z) (X Y + X Y) (ANSWER : X Y Z)

 _ _ _

(X + Z) (X Y + X Z) (ANSWER: X Z + X Y Z)

 ___ ___ _ _ _ _

(X Y + A) (X Z + Y) (ANSWER: X + Y Z + A Z + A Y)

78

PROBLEMS AND EXERCISES

2. Design a logic circuit with two inputs, A and B, and two outputs, X and Y,

so that it operates as follows:

(1) X and Y are both HIGH as long as A is HIGH, regardless of the level of

B.

(2) If A pulses LOW, the LOW will appear at X if B=0 or at Y if B=1.

3. Find the canonic algebraic forms of the logic function

 F(A,B,C) = A B + A C

4. List the minterm and maxterm indices of the logic function below

 _ _ _ _ _ _ _ _

 F(A B C) = A B C + A B C + A B C + A B C

2019.09.07.

40

79

PROBLEMS AND EXERCISES

5. Four large tanks at a chemical plant contain different liquids being

heated. Liquid-level sensors are being used to detect whenever the level

in tank A and B rise above a predetermined level. Temperature sensors

in tanks C and D detect when the temperature in these tanks drop below

a prescribed temperature limit. Assume that the liquid-level sensor

outputs A and B are low when the level is satisfactory and high when the

level is to high. Also, the temperature-sensor outputs C and D are low

when the temperature is satisfactory and high when the temperature is

too low.

Design a logic circuit that will detect whenever the level in tank A or tank

B is too high at the same time that the temperature in either tank C or

tank is too low.

(Adapted from R. J. Tocci: Digital Systems, Principles and Applications)

80

 END

