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5. LECTURE: LOGIC MINIMIZATION 

1. Revision and summary: canonic forms, minterms, 

maxterms, minimization, etc. 

  

 

2. Incompletely specified logic functions 

 

3. Logic synthesis examples using Karnaugh map 

 

4. Basics of tabular/numeric minimization (Quine- 

 McCluskey algorithm) with demo 

 

Repetitio est mater studiorum 
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REVISION AND SUMMARY 

• Combinational networks.... 

• Disjunctive and conjunctive canonic forms ... 

• Minterms and maxterms ... 

• Adjacency, minimization, prime implicants… 

• Graphic minimization... 

• Karnaugh map ... 

Repetitio est mater studiorum 
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CANONIC ALGEBRAIC FORMS OF  

LOGIC FUNCTIONS 

Because a logic function can have several equivalent 

algebraic forms, the basis of the synthesis is one of the 

canonical forms (extended SOP or extended POS forms).  

 

The  disjunctive canonical form (extended sum-of-product, 

SOP) is given as a sum of conjunctive terms, i.e. minterms.  

 

The  conjunctive canonical form (extended product-of-sum, 

POS) is given as a product of disjunctive terms, i.e. 

maxterms.  

Repetitio est mater studiorum 
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MINTERMS AND MAXTERMS 

All minterm is  the inverse of a maxterm and vice versa. 

 

k = 2n-1 and 

           ——— 

   mi
n = Mk-i

n  

and            ——— 

   Mi
n =  mk-i

n   

 

The indices of minterms and maxterms, i ands 2n-1-i are the 

complements of each other.  

In their binary forms the digits 0 and 1 are interchanged. The 

sum of the pairs of indices is 2n-1, which in binary form 

contains only the digit 1. 

Repetitio est mater studiorum 
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ADJACENT MINTERMS, MINIMIZATION 

Adjacent minterms: only one logic variable asserted  and 

negated respectively, all others are the same. 

 

Process of contraction and minimization:  

1. The adjacent minterms are contracted, the corresponding 

variables are eliminated. 

2. In the new form the adjacent terms are again contracted, 

etc.  

3. The process is continued till from the terms obtained no 

more variables can be eliminated by further contraction. 

 

The terms obtained such way are called  prime implicants  of 

the function. 

 
Repetitio est mater studiorum 
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TWO-LEVEL COMBINATIONAL NETWORKS 

(AND-OR, AND OR-AND RESPECTIVELY) 

The disjunctive canonic and conjunctive canonic forms 

represent such two-level networks (logic sum or OR 

connection of minterms realized by AND gates, or logic 

product or AND connection of maxterms realized by OR 

gates). 

 

The reductions or contractions performed during minimization 

result in simpler but also two-level AND-OR, or OR-AND 

networks respectively. 

Repetitio est mater studiorum 
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KARNAUGH MAP, K-MAP 

The  Karnaugh map is also known as Veitch diagram (K-map or KV-map) 

in short). First described by Maurice Karnaugh (Bell Labs, 1950), and 

Edward W. Veitch (1952). 

 

Edward W. Veitch, A chart method for simplifying truth functions, May 

1952, Proc. Assoc. for Computing Machinery, Pittsburgh  

Maurice Karnaugh, The map method for synthesis of combinational logic 

circuits, Trans. AIEE, pt. I, 72(9), 553-599, November 1953. 

 

The Karnaugh map, besides aiding fast and transparent minimization of 

logic functions having not too many (say less than 7 or 8) variables, can 

also be used to identify and eliminate potential hazard phenomena, 

which would be much more difficult to achieve using Boolean algebraic 

methods only. 

 

For straightforward minimization however, it is more clever to use an 

appropriate software … 
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SIMPLEST CONJUNCTIVE FORM 

The simplest product-of-form can (conjunctive form) can also 

be readily obtained from the Karnaugh map. 

 

The minterms of the negated functions should be covered 

with loops, this gives the simplest sum-of-product form of the 

negated function. Then applying the De Morgan theorems 

the simplest sum-of product form of the original function is 

readily obtained. 
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EXAMPLE: FINDING THE SIMPLEST 

CONJUNCTIVE FORM (PRODUCT-OF-SUMS) 

1 

1 1 

1 

1 

1 1 

C 

B 

D 

A 

Three 4-loops and two-2-

loops can be found when 

looping the maxterms. 

E.g. the alegebraic form of the 

upper  4-loop, when taking 

the compemeted variables is  

 

    (A + B)  

 

Maxterms: in the K map with 

minterms, we consider the 

cells containing 0, and on the 

edge we complement the 

labelling of variables.  
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SIMPLEST CONJUNCTIVE FORM 

(PRODUCT-OF-SUMS) 

 

—     — —       —           — —           —       —      —     

F = A B + B D + A C D + A C D + B C 

 

 

            —                —           —                 —   

F = (A+B)(B+D)(A+C+D)(A+C+D)(B+C) 

 

The same can be read from the 

Karnnaugh map too. 

12 

SOP AND POS COVERS 

Sum-of-products   Product of sums 
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INCOMPLETELY SPECIFIED  

LOGIC FUNCTIONS 
During looping (contracting) the  values not specified (don’t 

care terms or cells) can be freely chosen as 1 or 0, depending 

on which leads  to a simpler solution.  

 

Three types of mark in a Karrnaugh map (minterms!) 

 

 1 the function contains the minterm, 

 0 the function does not contain the minterm, 

 X the minterm values is not specified (don’t care). 

 

(Instead of 0 sometimes the cell simpy remains empty) 

 

Alternative notations:   d (don’t care) 
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INCOMPLETELY SPECIFIED  

LOGIC FUNCTIONS 

When minimizing incompletely logic functions it can happen 

that it is advantageous to fix the don’t care values differently 

for SOP and for POS network. 

 

In this case the complexity (e.g. pin number) of the two 

solutions can e different. 

 

When implementing the circuit, the real minimal network can 

only obtained by heuristics. 
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EXAMPLE:  ASSIGNING VALUE TO  

THE ”DON’T CARE” CELL 

1 1 1 1 

- - 

1 

1 1 

    

1 

1 

1 

C 

B 

D 

A 

It is practical to take the  

value of the ”yellow” cell  

in the case of SOP 

(disjunctive) optimization 

as 1,  

  

however in the case of 

POS (conjunctive) looping 

it is better to assign a 

value of  0 to this cell!  

16 

SIMPLEST ALGEBRAIC FORMS 

 

         —      —                     — 

 Fd = B + C D + A C D 

 

              —   —                  —    —  — 

 Fk = (A+B)(B+C+D)(B+C+D) 

 

Accounting also for the inverters to 

generate the necessary negated input 

variables, SOP version involves 11, 

the POS form involves 14 pins! 
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LOGIC SYNTHESIS EXAMPLES (1 AND 2) 

1. Synthesize a 4-input (ABCD), 1-output (F) combinational 

network the F output of which  is 1, if the binary numbers 

(MSB is A) present on the input are divisible with 3 or 4. Draw 

the Karnaugh map and the conceptual logic diagram 

 

2. Repeat above, if on the input only BCD (8-4-2-1) coded 

decimal digit can arrive. 

18 

SYNTHESIS (1): SOLUTION (SOP) 

1 1 

1 

1 

1 1 

  1  

1 

C 

B 

D 

A 

Divisible by 3:  

 0,3,6,9,12,15 

Divisible by 4: 

 0,4,8,12 

The logic function to be 

implemented 

F = 4(0,3,4,6,8,9,12,15) 

Optimized: 

       _ _     _    _        _ _ 

F = C D + A B D + A B C 

                     _ _ 

+  A B C D + A B C D 

 

(Perhaps  XOR logic?) 
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SYNTHESIS (1): MACHINE SOLUTION (SOP) 

20 

SYNTHESIS (1): SSI GATES 

Conceptual logic   1 pc 2-input  AND 

diagram:   2 pc 3-input  AND 

    2 pc 4-input  AND  

    1 pc 5-input  OR gate. 

Optimized network: 21 pins (gate inputs). 

Implementation (e.g.): 

  1/4  pc 74LS00 (4x2 input NAND) 

  2  pc  74LS20 (2x4 input NAND) 

  1  pc  74LS30 (1x8 input NAND)      

 

Extended SOP (canonic form), a total of 8x4 + 1x8 = 40 pins 

(gate inputs) would be necessary. 

 

In evaluating designs we will use the total pin number as the 

cost function. 
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SYNTHESIS (1): PLA IMPLEMENTATION 

PLA: a plane of AND gates followed with a plane of OR gates, 

interconnections can be established  by the user. 

A  B  C  D 
_  _ 

C D 

_     _ 

A B D 

    _ _ 

A B C 

 

A B C D 

_ _ 

A B C D 

  

          

       

       

      

 

 

 

 

 
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SYNTHESIS (1): SOLUTION (POS) 

1 1 

1 

1 

1 1 

  1  

1 

C 

B 

D 

A 

 

 

 

 

_     _ 

A + B + D   

 

etc., altogether six sum 

terms, each containing 

three variables  
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SYNTHESIS (1): MACHINE SOLUTION (POS) 

24 

SYNTHESIS (1): SSI GATES 

Conceptual logic diagram (OR-AND): 

  

 6 pc 3-input OR gate, 

 1 db 6 input AND gate. 

 

Optimized network: 24 pins (gate inputs). 

 

The extended SOP form (conjunctive canonic form) contains 

8 maxterms, therefore 8x4 + 1x8 = 40 pins (gate inputs) 

would be needed. 
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SYNTHESIS (2): SOLUTION (SOP) 

1 1 

1 

X X 

1 1 

  1  

X 

X 

X 

X 

C 

B 

D 

A 

Divisible by 3: 0,3,6,9  

 (12,15 excluded!) 

Divisible by 4: 0,4,8  

 (12 excluded!) 

 

The logic function: 

 

F = 4((0,3,4,6,8,9) +(10-15)) 

 

Optimized: 

             _  _       _     _ 

F = A + C D + B D + B C D 
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SYNTHESIS (2): SOLUTION (SOP) 
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SYNTHESIS (2): SOLUTION (SOP) 
Principal logic diagram consists of: 

 one direct connection, 

 two 2-input AND gates, 

 one 3 input AND gate, 

 one 4-input OR gate. 

 

Minimized network: 12 pins (gate inputs). 

Implementation (modular logic): 

  3/4  7400 (4x2-input NAND) 

  1     7420 (2x4-input NAND) 

Implementation of the extended SOP form would need  

6x4 + 1x6 = 30 gate inputs. 

 

Note: the OR-AND network would result in a somewhat simpler 

network (11 pins). 

28 

SYNTHESIS (2): PLA IMPEMENTATION 

PLA: a plane of AND gates followed with a plane of OR gates, 

interconnections can be established  by the user. 

A  B  C  D 
 

A 

_  _ 

C D 

    _ 

B D 

_ 

B C D 

  

           

           

      

 

 

 

 
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SYNTHESIS (2): SOLUTION (POS) 

30 

SYNTHESIS EXAMPLE (3):  

2-BIT (SIMPLE) COMBINATIONAL ADDER 

A, B, C, D are the inputs, X, Y, Z are the outputs of a 

combinational circuit. If the input is interpreted as two 2-bit 

numbers (AB, A is the MSB, and CD, C is the MSB), the 

output be the sum of the two binary numbers present at the 

input, (XYZ, X is the MSB), i. e. XYZ = AB + CD. E. g.  101 

= 11 + 10 (binary addition). 

 

Derive the truth table of the network. 

Give the simplest Boolean function separately for each 

output. 

Construct the 2-bit adder. 
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SYNTHESIS EXAMPLE (3): SOLUTION 

2-bit  

A 

B 

C 

D 

X 

Y 

Z  

E.g. if A B C D = 1 1 0 1 then X Y Z = 1 1 0 

 

because A B  1 1  

       +  C D  0 1 

    =  X Y Z         1 1 0 

Two-bit combinational adder 

32 

SYNTHESIS (3): TRUTH  TABLE OF  

2-BIT COMBINATIONAL ADDER 

A   B   C   D   X   Y   Z 

 

0   0   0   0   0   0   0 

0   0   0   1     0   0   1 

0   0   1   0   0   1   0 

...  ...  ...  …   ...  ...  ... 

1   0   1   0   1   0   0 

...  …  ...  …   ...  … ... 

1   1   1   1   1   1   0 

From the truth table the logic  

functions to be implemented 

   

X = 4(7,10,11,13-15) 

   

Y = 4(2,3,5,6,8,9,12,15) 

   

Z = 4(1,3,4,6,9,11,12,14) 
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SYNTHESIS (3): AND-OR OPTIMIZATION 

X = A C + B C D + A B D 

       _    _     _  _          _  _       _ _      

Y = A C D + A B C + A C D + A B C  

     _     _   

  + A B C D + A B C D 
(perhaps XOR logic?) 

34 

SYNTHESIS (3): AND-OR OPTIMIZATION 

       _           _ 

Z = B D + B D  (perhaps XOR logic?)  
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2-BIT BINARY FULL ADDER 

Two-bit binary full adders 

5482/7482 

36 

2-BIT BINARY FULL ADDER: DESCRIPTION 
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ANALYSIS OF 2-BIT ADDERS 

2-bit (simple) adder: 11 gates, two-level circuit, delay two 

gate units, no input carry, no chaining possibility. 

 

2-bit full adder: 18 gates, more than two levels, delay 

longer (four gate units), input carry handling, chaining 

possibility.  

 

Outlook: multibit (parallel) adders: define/implement 1-bit 

full adder (3 inputs: two operands and carry in, 2 outputs: 

sum and carry out), and chain them …. 

38 

integer number_of_days ( month, leap_year_flag) { 
switch (month) { 

case  1: return (31); 
case  2: if (leap_year_flag == 1) 

            then return (29) 
            else return (28); 

case  3: return (31); 
case  4: return (30); 

case  5: return (31); 
case  6: return (30); 

case  7: return (31); 
case  8: return (31); 

case  9: return (30); 
case 10: return (31); 

case 11: return (30); 
case 12: return (31); 

default: return (0); 
} 

} 

CALENDAR SUBSYSTEM 
Determine number of days in a month (to control watch 

display) 

Used in controlling the display of a wrist-watch LCD screen 

 

 

Inputs: month, leap year flag 

Outputs: number of days 

 

 

 

Use software implementation 

to help understand the problem 
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leap month 

28 29 30 31 

month leap 28 29 30 31 
0000 – – – – – 
0001 – 0 0 0 1 
0010 0 1 0 0 0 
0010 1 0 1 0 0 
0011 – 0 0 0 1 
0100 – 0 0 1 0 
0101 – 0 0 0 1 
0110 – 0 0 1 0 
0111 – 0 0 0 1 
1000 – 0 0 0 1 
1001 – 0 0 1 0 
1010 – 0 0 0 1 
1011 – 0 0 1 0 
1100 – 0 0 0 1 
1101 – – – – – 
111– – – – – – 

FORMALIZE THE PROBLEM 

Encoding: 

Binary number for month: 4 bits 

4 wires for 28, 29, 30, and 31 

one-hot – only one true at any time 

 

Block diagram: 

CALENDAR: 31-DAY MONTHS 

- 1 1 0 

0 

1 

1 

- 

1 0 

1 0 

- 

0 

- 

1 

C 

B 

D 

A 

Colour code shows the 

minimal covering 

 

      —                —  

F = A D + A D  

 

The don’t care terms can 

be used advantageously in 

the minimization 
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CALENDAR: 30-DAY MONTHS 

- 

1 

- 

1 

1 

- 

1 

- 

C 

B 

D 

A 

The optimal cover 

 

                _    _ 

F = A D + A B D  

 

month leap 28 29 30 31 
0000 – – – – – 
0001 – 0 0 0 1 
0010 0 1 0 0 0 
0010 1 0 1 0 0 
0011 – 0 0 0 1 
0100 – 0 0 1 0 
0101 – 0 0 0 1 
0110 – 0 0 1 0 
0111 – 0 0 0 1 
1000 – 0 0 0 1 
1001 – 0 0 1 0 
1010 – 0 0 0 1 
1011 – 0 0 1 0 
1100 – 0 0 0 1 
1101 – – – – – 
111– – – – – – 

IMPLEMENTATION 

• Discrete gates 

 

– 28 =  

 

– 29 = 

 

– 30 =  

 

– 31 =  

 

• Can translate to S-o-P 

or P-o-S 

m8’ m4’ m2 m1’ leap’ 

m8’ m4’ m2 m1’ leap 

m8’ m4 m1’ + m8 m1 

m8’ m1 + m8 m1’ 
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PRODUCTION LINE CONTROL 

• Rods of varying length (+/-10%) travel on conveyor belt 

– Mechanical arm pushes rods within spec (+/-5%) to one 

side 

– Second arm pushes rods too long to other side 

– Rods that are too short stay on belt 

– 3 light barriers (light source + photocell) as sensors 

– Design combinational logic to activate the arms 

 

• Understanding the problem 

– Inputs are three sensors 

– Outputs are two arm control signals 

– Assume sensor reads "1" when tripped, "0" otherwise 

– Call sensors A, B, C 

SKETCH OF THE PROBLEM 

• Position of Sensors 

– A to B distance = specification – 5% 

– A to C distance = specification + 5% 

 

Within 
Spec 

Too 
Short 

Too 
Long 

A 

B 

C 

spec 
- 5%  

spec 
+ 5% 
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logic implementation now  
straightforward 
just use three 3-input AND gates 
 
     "too short" = AB'C' 
 (only first sensor tripped) 
 
    "in spec" = A B C' 
 (first two sensors tripped) 
 
    "too long" = A B C 
 (all three sensors tripped) 

A B C Function 
0 0 0 do nothing 
0 0 1 do nothing 
0 1 0 do nothing 
0 1 1 do nothing 
1 0 0 too short 
1 0 1 don't care 
1 1 0 in spec 
1 1 1 too long 

FORMALIZE THE PROBLEM 

Truth Table 

Show don't cares 

46 

PROGRAMMABLE LOGIC GATE 
Construct a programmable logic gate! 

The network has two data inputs (A, B) and two control 

inputs (F, G). 

The gate, depending on the control code should behave as 

specified below: 

 

  FG  Output 

 

  00  NEGATED A 

  01  A AND B 

  10  A OR B 

  11  A XOR B 

 

Try to reduce the number of gate inputs (pin number) as far 

as possible.  
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TRUTH TABLE / KARNAUGH MAP 

1 1 

1 

1 

 1   

1 

1 

1 

A 

G 

B 

F 

NEGATED A 

 

A AND B 

 

 

A XOR B 

 

A OR B 

48 

MINIMAL DISJUNCTIVE COVER 

1 1 

1 

1 

 1   

1 

1 

1 

A 

G 

B 

F 

NEGATED A 

 

A AND B 

 

 

A XOR B 

 

A OR B 

SOP: minimal cover with 21 

gate inputs 
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MINIMAL DISJUNCTIVE COVER 

50 

MINIMAL CONJUNCTIVE COVER 

1 1 

1 

1 

 1   

1 

1 

1 

A 

G 

B 

F 

NEGATED A 

 

A AND B 

 

 

A XOR B 

 

A OR B 

POS: minimal cover with 21 

gate inputs 
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MINIMAL CONJUNCTIVE COVER 

52 

AND/OR/XOR VERSION 

1 1 

1 

1 

 1   

1 

1 

1 

A 

G 

B 

F 

_  _ _ 

F G A 
A B (F  G)  

F (A  B)  

Total pin number: only 15! 

However the result will be a 

three level network. 
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AND/OR/XOR IMPLEMENTATION 

& 

 

 
& 

& 
1 

_  _ _ 

F G A 

A B (F  G)  

F (A  B)  

54 

THE QUINE-MCCLUSKEY METHOD 

An alternative to using K-maps is the Quine-McCluskey 

algorithm. The Quine-McCluskey algorithm provides a 

systematic approach for finding the prime implicants and 

selecting a minimal cover. It is functionally equivalent to the 

Karnaugh mapping, but the tabular form makes it more 

efficient for use in computer algorithms, and also give a 

deterministic way to check that the minima form of a 

Boolean function has been reached. It is sometimes 

referred to as the tabulation method. 
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COMPLEXITY 

The tabular method is more practical than Karnaugh mapping 

when dealing with more than four variables, it has also a 

limited range of use since the runtime of the algorithm grows 

exponentially with the input size.  

 

For a function of n variables the upper bound on the number 

of prime implicants is 3n/n (i.e. 20 for n = 4, 48 for n =5, 121 

for n = 6, 312 for n = 7, etc.). If n = 32 there may be over 

6,5x1015 prime implicants. 

 

Functions with a large number of variables have to be 

optimized with potentially non-optimal heuristic methods. 

56 

ADJACENCY OF MINTERMS 

The minimization is based on finding and grouping the 

adjacent minterms, then terms, till the further not reducible 

prime implicants are arrived at. 

 

The necessary and sufficient condition of the adjacency of 

two minterms can be given by three statements, which 

should be fulfilled simultaneously. 

 

It is important the these three statements (conditions) can 

be given based only on the lower indexes of the minterms. 

 

Note: see Arató’s text for details. 
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ADJACENCY CONDITION NO. 1 

Two minterms are adjacent, if the difference between their 

decimal index is a power of two.  

    —            —      — —       —        —      — 

 6 0110  A B C D + A B C D  A C D 

 2 0010 

 4  

 

This is a necessary but not suffcient condition.  

 

Counterexample: it is fulfilled for minterms with index 2 (i.e. 

0010) and 4 (i.e. 0100), however they are not adjacent.  

58 

ADJACENCY CONDITION NO. 2 

Two minterms are adjacent, if their binary weights  (number 

of 1s) differ by 1. 

              _            _       _ _     _      _     _ 

 6 0110 (2) A B C D + A B C D  A C D 

 2 0010 (1) 

 4          (1) 

 

This is also necessary but not sufficient condition, because 

just this is the condition which is not fulfilled for minterms m2 

and m4 figuring in the previous counterexample.  
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ADJACENCY CONDITION NO. 3 

Two minterms are adjacent, if, the decimal index of the 

minterm with larger binary weight is also larger than the 

decimal index of the other minterm. 

             _        _     _ _     _      _     _    

 6 0110 2           A B C D + A B C D  A C D 

 2 0010 1 

 4          1 

    

   6  2 and 2  1 

 

This is also a necessary but in itself  not sufficient condition, 

because e.g. the minterms m7 and m9, for which the first two 

conditions are fullfilled, fail this 3rd condition.  

60 

QUINE-MCCLUSKEY ALGORITHM 

It can be exaclty proven that the simultaneous fullfillement of 

the three conditions stated above is not only necessary but 

also sufficient condition for the adjacency of the two minterms 

in question. 

 

This forms the basis of the Quine-McCluskey algorithm. 
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QUINE-MCCLUSKEY ALGORITHM 

The Quine-McCluskey algorithm of numeric or tabular 

minimization  analyzing solely the minterm indices  based on 

these three conditions finds all possible adjacent pairs of 

minterms, then it repeats the process till finds all the prime 

implicants.  

The method therefore involves the following two steps: 

 

1. Finding all prime implicants of the function. 

 

2. Use those prime implicants in a prime implicant chart to find 

the essential prime implicants of the function, as well as 

other prime implicants that are necessary to cover the 

function. 

Q-M WORKED EXAMPLE 

F(A,B,C) = 3(1,2,3,6,7) is to be minimized 

Group and arrange minterms in an implicant table according 

to their Hamming weight. Neighbours can differ only in one 

place. Minterms in group 2 can have neighbours only from 

group 1 or 3. 

001 HW = 1  (1) m1, m2 

010           1  (2)  m3, m6 

011           2  (3) m7 

110           2 

111               3 



2019.09.07. 

32 

IMPLICANT TABLE 

Size Minterms 

m(i) 

One-cube 

m(i,j) 

Two-cube 

m(i,j,k,l) 

1 m1 

m2 

1,3 (2) * 

2,3 (1) 

2,6 (4) 

2,3,6,7 (1,4) * 

2 m3 

m6 

3,7 (4) 

6,7 (1) 

3 m7 

All terms should be accounted for. Terms which cannot be 

merged further are the prime implicants (*). 

Merge terms from adjacent groups with 

decimal index differing by 1, 2, 4, 8, etc. Mark 

terms used. Terms can be used several times. 

COVERING TABLE 

Prime implicants Minterms 

 1    2    3    6    7 

(2,3,6,7) *        X   X    X   X 

(1,3)*  X         X 

Construct a prime implicant or covering table as shown.  

The minterm m2 occurs only in one column, therefore 

m(2,3,6,7) is an essential prime implicant. This  takes care of 

m3, m6, and m7 too. Continue … m(1,3) is also necessary 

because of m1. 

                     _ 

 F(A,B,C) = m(2,3,6,7) + m(1,3) = B + A C 

                     

                                  X 1 X          0 X 1           
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Using the Q-M Procedure with 

Incompletely Specified Functions 

1.  Use minterms and don’t cares when generating 

prime implicants 

 

2.  Use only minterms when finding a minimal 

cover 
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REVIEW QUESTIONS 

1. What are the don’t-care conditions? 

 

2. Explain the terms (a) prime implicant, and (b) essential 

prime implicant, (c) non-essential prime implicant. 

 

3. List and discuss the necessary conditions for establishing 

adjacency when applying the numerical/tabular minimization 

(Quine-McCluskey algorithm). 

 

4. Find and download from the the internet an appropriate 

software for Karnaugh map and Quine-McCluskey 

minimization, and learn its use. 

68 

PROBLEMS AND EXERCISES 

1. Give the Karnaugh map of the 4-input (A,B,C,D) single output (F) 

combinational circuit, the output of which is 1 if 

- inputs A and B have different values when inputs C and D have the 

same value, 

or 

- input B is the same as input D when inputs A and C have different 

values. 

When writing the Karnaugh map take into account that those input 

combinations where all inputs have the same value never occur. 

 

2. Given the three-variable logic function 

  

  F(A,B,C) = 3(0,2,3,4) 

  

Find the minimized product-of-sums (POS) form.  

                 _           _ 

(ANS: F= (A + B) (B + C)) 
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PROBLEMS AND EXERCISES 

3. Draw the simplest two-level AND-OR as well as the 

simplest two-level OR-AND logic diagrams for the following 

logic functions: 

  

    F = Σ4 (1,2,3,5,9,10,11,14)  

  

   G = Σ4 (6,9,10,11,14,15)  

  

   H = Σ4 (0,4,6,8,12,14)  

  

HINT: Use Karnaugh maps 
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PROBLEMS AND EXERCISES 

4. In the Karnaugh map below, d means don’t care, i.e. we 

can assign either a 0 or 1 to a cell which contains a d. 

Using these don’t care terms, find the simplest logic 

 expression and realization of the function. 

 

 

 

 

 

 

 

 

(Source: D. L. Schilling, C. Belove, Electronic circuits: 

Discrete and integrated, McGraw-Hill, Inc., 1983) 
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5. Three-way light control switch problem. Assume a large 

room has three doors and that a switch near each door 

controls a light in the room. The light is turned on or off by 

changing the state of any one of the switches. More 

specifically, the following should happen: 

a. The light is OFF when all three switches are open. 

b. Closing any one switch will turn the light ON. 

c. Then closing the second switch will have to turn OFF 

the light. 

d. If the light is off when the two switches are closed, then 

by closing the third switch 

    the light will turn ON. 

 

PROBLEMS AND EXERCISES 
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6. Using the Quine-McCluskey method  

    a. find all prime implicants of the function below, 

    b. determine the minimal cover. 

  

 F(A, B, C, D) = 4(0, 4, 5, 6, 7, 9, 11, 13, 14) 

  

ANS/HINT: 

 

Six prime implicants be found (see K-map below). Four of 

them are essential prime implicants, and any one of the 

remaining two prime implicants added will result in minimal 

cover.  

Therefore two equivalent  minimal circuits exist. 
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PROBLEMS AND EXERCISES 

K-map for problem 6. 

PROBLEMS AND EXERCISES 
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7. A “coincidence unit” has four binary inputs A0, A1, A2, A3 and two 

binary outputs B0, B1. If one or zero of the inputs is HIGH, then the 

outputs remain LOW. If two or more inputs are HIGH, then the outputs 

encode a 2-bit binary number, which is the address of the most 

significant HIGH input. (A3 is the MSB). For example, A3A2A1A0 = 

0100 gives B1B0 = 00, and A3A2A1A0 = 0111 gives B1B0 = 2. 

 

 

 

 

 

 

 

a. Find minimized logic  

expressions for B0 and B1. 

b. Implement your circuit with standard gate logic. It should be possible 

to do this with gates having no more than two inputs. 
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KARNAUGH MAP SOFTWARES 

kmap12.exe www.puz.com/sw/karnaugh/ 

 

kmin.zip  karnaugh.shuriksoft.com/ 

 

KMapSimulator.zip  members.cox.net/cyclone1980/ 

KMapSimulation10Embedded.htm 

 

Bmin Karnaugh map, Quine-McCluskey, Espresso 

 

The softwares can handle both algebraic forms: 

SOP: sum-of-products, disjunctive algebraic form 

POS: product-of-sums, conjunctive algebraic form 

 

Some softwares can also handle don’t care terms.  
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END OF LECTURE 

 
 

 


