

Because a logic function can have several equivalent algebraic forms, the basis of the synthesis is one of the canonical forms (extended SOP or extended POS forms).

The disjunctive canonical form (extended sum-of-product, SOP) is given as a sum of conjunctive terms, i.e. minterms.

The conjunctive canonical form (extended product-of-sum, POS) is given as a product of disjunctive terms, i.e. maxterms.

Repetitio est mater studiorum

TWO-LEVEL COMBINATIONAL NETWORKS (AND-OR, AND OR-AND RESPECTIVELY)

The disjunctive canonic and conjunctive canonic forms represent such two-level networks (logic sum or OR connection of minterms realized by AND gates, or logic product or AND connection of maxterms realized by OR gates).

The reductions or contractions performed during minimization result in simpler but also two-level AND-OR, or OR-AND networks respectively.

Repetitio est mater studiorum

KARNAUGH MAP, K-MAP

The Karnaugh map is also known as Veitch diagram (K-map or KV-map) in short). First described by Maurice Karnaugh (Bell Labs, 1950), and Edward W. Veitch (1952).

Edward W. Veitch, *A chart method for simplifying truth functions*, May 1952, Proc. Assoc. for Computing Machinery, Pittsburgh Maurice Karnaugh, *The map method for synthesis of combinational logic circuits*, Trans. AIEE, pt. I, 72(9), 553-599, November 1953.

The Karnaugh map, besides aiding fast and transparent minimization of logic functions having not too many (say less than 7 or 8) variables, can also be used to identify and eliminate potential hazard phenomena, which would be much more difficult to achieve using Boolean algebraic methods only.

For straightforward minimization however, it is more clever to use an appropriate software ...

8

9

SIMPLEST CONJUNCTIVE FORM

The simplest product-of-form can (conjunctive form) can also be readily obtained from the Karnaugh map.

The minterms of the negated functions should be covered with loops, this gives the simplest sum-of-product form of the negated function. Then applying the De Morgan theorems the simplest sum-of product form of the original function is readily obtained.

INCOMPLETELY SPECIFIED LOGIC FUNCTIONS

When minimizing incompletely logic functions it can happen that it is advantageous to fix the don't care values differently for SOP and for POS network.

In this case the complexity (e.g. pin number) of the two solutions can e different.

When implementing the circuit, the real minimal network can only obtained by heuristics.

SYNTHESIS (1): SSI GATES						
Conceptual logic	1 pc 2-input AND					
diagram:	2 pc 3-input AND					
	2 pc 4-input AND 1 pc 5-input OR gate					
Optimized network	x: 21 pins (gate inputs).					
1/4 pc	74LS00 (4x2 input NAND)					
2 pc	74LS20 (2x4 input NAND)					
1 pc	74LS30 (1x8 input NAND)					
Extended SOP (canonic form), a total of $8x4 + 1x8 = 40$ pins (gate inputs) would be necessary.						
In evaluating design cost function.	gns we will use the total pin number as the 20					

SYNTHESIS EXAMPLE (3): 2-BIT (SIMPLE) COMBINATIONAL ADDER

A, B, C, D are the inputs, X, Y, Z are the outputs of a combinational circuit. If the input is interpreted as two 2-bit numbers (AB, A is the MSB, and CD, C is the MSB), the output be the sum of the two binary numbers present at the input, (XYZ, X is the MSB), i. e. XYZ = AB + CD. E. g. 101 = 11 + 10 (binary addition).

Derive the truth table of the network. Give the simplest Boolean function separately for each output.

Construct the 2-bit adder.

2-BIT BINARY FULL ADDER: DESCRIPTION

These full adders perform the addition of two 2-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C2) is obtained from the second bit. Designed for medium-to-highspeed, multiple-bit, parallel-add/serial-carry applications, these circuits utilize high-speed, high-fan-out transistor-transistor logic (TTL) and are compatible with both DTL and TTL logic families. The implesingle-inversion, high-speed, mentation of: а Darlington-connected serial-carry circuit within each bit minimizes the necessity for extensive "lookahead" and carry-cascading circuits.

<text><text><text><text><text>

FORMALIZE THE PROBLEM							
Truth Table Show don't cares	logic implementation now straightforward just use three 3-input AND gates						
ABCFunction000do nothing001do nothing010do nothing011do nothing10too short101don't care110in spec111too long	"too short" = AB'C' (only first sensor tripped) "in spec" = A B C' (first two sensors tripped) "too long" = A B C (all three sensors tripped)						

PROGRAMMABLE LOGIC GATE Construct a programmable logic gate! The network has two data inputs (A, B) and two control inputs (F, G). The gate, depending on the control code should behave as specified below:							
	FG	Output					
	00 01 10 11	NEGATED A A AND B A OR B A XOR B					
Try to reduce as possible.	e the number	of gate inputs (pin number) as far 46					

COMPLEXITY

The tabular method is more practical than Karnaugh mapping when dealing with more than four variables, it has also a limited range of use since the runtime of the algorithm grows exponentially with the input size.

For a function of n variables the upper bound on the number of prime implicants is $3^n/n$ (i.e. 20 for n = 4, 48 for n =5, 121 for n = 6, 312 for n = 7, etc.). If n = 32 there may be over $6,5x10^{15}$ prime implicants.

Functions with a large number of variables have to be optimized with potentially non-optimal heuristic methods.

55

<text><text><text><text><text><text>

QUINE-MCCLUSKEY ALGORITHM

The Quine-McCluskey algorithm of numeric or tabular minimization analyzing solely the minterm indices based on these three conditions finds all possible adjacent pairs of minterms, then it repeats the process till finds all the prime implicants.

The method therefore involves the following two steps:

- 1. Finding all prime implicants of the function.
- 2. Use those prime implicants in a prime implicant chart to find the essential prime implicants of the function, as well as other prime implicants that are necessary to cover the function.

Q-M WORKED EXAMPLE								
F(A,E	$B,C) = \Sigma^3(1,2,3,6)$	6,7) is to be r	minimized					
001 010 011 110 111	HW = 1 1 2 2 3	(1) (2) (3)	m1, m2 m3, m6 m7					
Group and arrange minterms in an implicant table according to their Hamming weight. Neighbours can differ only in one place. Minterms in group 2 can have neighbours only from group 1 or 3.								

Size	Minterms	One-cube	Two-cube
	m(i)	m(i,j)	m(i,j,k,l)
1	m1	> 1,3 (2) *	2,3,6,7 (1,4)
	m2	🔒 2,3 (1)	
		> 2,6 (4)	
2	m3	3,7 (4)	
	m6	6 ,7 (1)	
3	m7		
	Merge terms fro	om adjacent gro	ups with
	decimal index of	differing by 1, 2,	4, 8, etc. Mark
	terms used. Ter	ms can be used	several times.

	COVERI	NG	ТА	BL	E		
	Prime implicants	Mi	nter	ms			
	•	1	2	3	6	7	
	(2,3,6,7) *		Х	Х	Х	Х	
	(1,3)*	X		Х			
Const The m m(2,3, m3, m becau	ruct a prime implicant o interm m2 occurs only ,6,7) is an essential pri 6, and m7 too. Continu se of m1.	or cov in or me ir ie	verii ne c npli m(*	ng ta olur <mark>cant</mark> 1,3)	able nn, Th is a	e as sh theref nis tal Iso ne	nown. fore kes care o ecessary
	F(A,B,C) = m(2,3,6,7)	+ m([1,3]) = E	- 3 + 7	ĀC	

X 1 X 0 X 1

Com	plete form: f(c,b,a nal form: f(c,b,a) = sum m() = ac' + b	1,2,3,6,7)										Edit	
Repr	resentation of logic	function:	Sum of Pro	oducts 💌	Alg	orithm: Quine	e-McClusk	key	•					Minir	nize
come					Qu	line-M	lcClu	us	key	Alç	ori	thm			
Wel	Finding P	rime I	mplic	ants		1		_							
	Size 1 primes	Mintorm	0-cubo	Size 2 pi	rimes	Size 4 prim	les	_							
(-Map	1	m1 m2	001 010	m(1,3) m(2,3) m(2,6)	0-1* 01- -10	m(2,3,6,7)	-1-*	1							
-	2	m3 m6	011 110	m(3,7) m(6,7)	-11 11-										
	3	m7	111												
skey Boolean n-Cubo	Prime Im 1 m(1,3) X m(2,3,6,7)	plican 2 3 6 7 X X X X X	ts Tab	ble											

71

PROBLEMS AND EXERCISES

5. Three-way light control switch problem. Assume a large room has three doors and that a switch near each door controls a light in the room. The light is turned on or off by changing the state of any one of the switches. More specifically, the following should happen:

a. The light is OFF when all three switches are open.

b. Closing any one switch will turn the light ON.

c. Then closing the second switch will have to turn OFF the light.

d. If the light is off when the two switches are closed, then by closing the third switch

the light will turn ON.

PROBLEMS AND EXERCISES6. Using the Quine-McCluskey methoda. find all prime implicants of the function below,b. determine the minimal cover. $F(A, B, C, D) = \Sigma^4(0, 4, 5, 6, 7, 9, 11, 13, 14)ANS/HINT:Six prime implicants be found (see K-map below). Four of
them are essential prime implicants, and any one of the
remaining two prime implicants added will result in minimal
cover.Therefore two equivalent minimal circuits exist.$

KARN	AUGH MAP SOFTWARES					
kmap12.exe www	.puz.com/sw/karnaugh/					
kmin.zip	karnaugh.shuriksoft.com/					
<i>KMapSimulator.zip</i> members.cox.net/cyclone1980/ KMapSimulation10Embedded.htm						
Bmin Karnaugh map, Quine-McCluskey, Espresso						
The softwares can handle both algebraic forms: SOP: sum-of-products, disjunctive algebraic form POS: product-of-sums, conjunctive algebraic form						
Some softwares c	an also handle don't care terms.	75				

