
2019.09.07.

1

1

DIGITAL TECHNICS I

Dr. Bálint Pődör

Óbuda University, Microelectronics and Technology Institute

5. LECTURE: LOGIC MINIMIZATION

 1st year BSc course 1st (Autumn) term 2018/2019

2

5. LECTURE: LOGIC MINIMIZATION

1. Revision and summary: canonic forms, minterms,

maxterms, minimization, etc.

2. Incompletely specified logic functions

3. Logic synthesis examples using Karnaugh map

4. Basics of tabular/numeric minimization (Quine-

 McCluskey algorithm) with demo

Repetitio est mater studiorum

2019.09.07.

2

3

REVISION AND SUMMARY

• Combinational networks....

• Disjunctive and conjunctive canonic forms ...

• Minterms and maxterms ...

• Adjacency, minimization, prime implicants…

• Graphic minimization...

• Karnaugh map ...

Repetitio est mater studiorum

4

CANONIC ALGEBRAIC FORMS OF

LOGIC FUNCTIONS

Because a logic function can have several equivalent

algebraic forms, the basis of the synthesis is one of the

canonical forms (extended SOP or extended POS forms).

The disjunctive canonical form (extended sum-of-product,

SOP) is given as a sum of conjunctive terms, i.e. minterms.

The conjunctive canonical form (extended product-of-sum,

POS) is given as a product of disjunctive terms, i.e.

maxterms.

Repetitio est mater studiorum

2019.09.07.

3

5

MINTERMS AND MAXTERMS

All minterm is the inverse of a maxterm and vice versa.

k = 2n-1 and

 ———

 mi
n = Mk-i

n

and ———

 Mi
n = mk-i

n

The indices of minterms and maxterms, i ands 2n-1-i are the

complements of each other.

In their binary forms the digits 0 and 1 are interchanged. The

sum of the pairs of indices is 2n-1, which in binary form

contains only the digit 1.

Repetitio est mater studiorum

6

ADJACENT MINTERMS, MINIMIZATION

Adjacent minterms: only one logic variable asserted and

negated respectively, all others are the same.

Process of contraction and minimization:

1. The adjacent minterms are contracted, the corresponding

variables are eliminated.

2. In the new form the adjacent terms are again contracted,

etc.

3. The process is continued till from the terms obtained no

more variables can be eliminated by further contraction.

The terms obtained such way are called prime implicants of

the function.

Repetitio est mater studiorum

2019.09.07.

4

7

TWO-LEVEL COMBINATIONAL NETWORKS

(AND-OR, AND OR-AND RESPECTIVELY)

The disjunctive canonic and conjunctive canonic forms

represent such two-level networks (logic sum or OR

connection of minterms realized by AND gates, or logic

product or AND connection of maxterms realized by OR

gates).

The reductions or contractions performed during minimization

result in simpler but also two-level AND-OR, or OR-AND

networks respectively.

Repetitio est mater studiorum

8

KARNAUGH MAP, K-MAP

The Karnaugh map is also known as Veitch diagram (K-map or KV-map)

in short). First described by Maurice Karnaugh (Bell Labs, 1950), and

Edward W. Veitch (1952).

Edward W. Veitch, A chart method for simplifying truth functions, May

1952, Proc. Assoc. for Computing Machinery, Pittsburgh

Maurice Karnaugh, The map method for synthesis of combinational logic

circuits, Trans. AIEE, pt. I, 72(9), 553-599, November 1953.

The Karnaugh map, besides aiding fast and transparent minimization of

logic functions having not too many (say less than 7 or 8) variables, can

also be used to identify and eliminate potential hazard phenomena,

which would be much more difficult to achieve using Boolean algebraic

methods only.

For straightforward minimization however, it is more clever to use an

appropriate software …

2019.09.07.

5

9

SIMPLEST CONJUNCTIVE FORM

The simplest product-of-form can (conjunctive form) can also

be readily obtained from the Karnaugh map.

The minterms of the negated functions should be covered

with loops, this gives the simplest sum-of-product form of the

negated function. Then applying the De Morgan theorems

the simplest sum-of product form of the original function is

readily obtained.

10

EXAMPLE: FINDING THE SIMPLEST

CONJUNCTIVE FORM (PRODUCT-OF-SUMS)

1

1 1

1

1

1 1

C

B

D

A

Three 4-loops and two-2-

loops can be found when

looping the maxterms.

E.g. the alegebraic form of the

upper 4-loop, when taking

the compemeted variables is

 (A + B)

Maxterms: in the K map with

minterms, we consider the

cells containing 0, and on the

edge we complement the

labelling of variables.

2019.09.07.

6

11

SIMPLEST CONJUNCTIVE FORM

(PRODUCT-OF-SUMS)

— — — — — — — — —

F = A B + B D + A C D + A C D + B C

 — — — —

F = (A+B)(B+D)(A+C+D)(A+C+D)(B+C)

The same can be read from the

Karnnaugh map too.

12

SOP AND POS COVERS

Sum-of-products Product of sums

2019.09.07.

7

13

INCOMPLETELY SPECIFIED

LOGIC FUNCTIONS
During looping (contracting) the values not specified (don’t

care terms or cells) can be freely chosen as 1 or 0, depending

on which leads to a simpler solution.

Three types of mark in a Karrnaugh map (minterms!)

 1 the function contains the minterm,

 0 the function does not contain the minterm,

 X the minterm values is not specified (don’t care).

(Instead of 0 sometimes the cell simpy remains empty)

Alternative notations: d (don’t care)

14

INCOMPLETELY SPECIFIED

LOGIC FUNCTIONS

When minimizing incompletely logic functions it can happen

that it is advantageous to fix the don’t care values differently

for SOP and for POS network.

In this case the complexity (e.g. pin number) of the two

solutions can e different.

When implementing the circuit, the real minimal network can

only obtained by heuristics.

2019.09.07.

8

15

EXAMPLE: ASSIGNING VALUE TO

THE ”DON’T CARE” CELL

1 1 1 1

- -

1

1 1

1

1

1

C

B

D

A

It is practical to take the

value of the ”yellow” cell

in the case of SOP

(disjunctive) optimization

as 1,

however in the case of

POS (conjunctive) looping

it is better to assign a

value of 0 to this cell!

16

SIMPLEST ALGEBRAIC FORMS

 — — —

 Fd = B + C D + A C D

 — — — — —

 Fk = (A+B)(B+C+D)(B+C+D)

Accounting also for the inverters to

generate the necessary negated input

variables, SOP version involves 11,

the POS form involves 14 pins!

2019.09.07.

9

17

LOGIC SYNTHESIS EXAMPLES (1 AND 2)

1. Synthesize a 4-input (ABCD), 1-output (F) combinational

network the F output of which is 1, if the binary numbers

(MSB is A) present on the input are divisible with 3 or 4. Draw

the Karnaugh map and the conceptual logic diagram

2. Repeat above, if on the input only BCD (8-4-2-1) coded

decimal digit can arrive.

18

SYNTHESIS (1): SOLUTION (SOP)

1 1

1

1

1 1

 1

1

C

B

D

A

Divisible by 3:

 0,3,6,9,12,15

Divisible by 4:

 0,4,8,12

The logic function to be

implemented

F = 4(0,3,4,6,8,9,12,15)

Optimized:

 _ _ _ _ _ _

F = C D + A B D + A B C

 _ _

+ A B C D + A B C D

(Perhaps XOR logic?)

2019.09.07.

10

19

SYNTHESIS (1): MACHINE SOLUTION (SOP)

20

SYNTHESIS (1): SSI GATES

Conceptual logic 1 pc 2-input AND

diagram: 2 pc 3-input AND

 2 pc 4-input AND

 1 pc 5-input OR gate.

Optimized network: 21 pins (gate inputs).

Implementation (e.g.):

 1/4 pc 74LS00 (4x2 input NAND)

 2 pc 74LS20 (2x4 input NAND)

 1 pc 74LS30 (1x8 input NAND)

Extended SOP (canonic form), a total of 8x4 + 1x8 = 40 pins

(gate inputs) would be necessary.

In evaluating designs we will use the total pin number as the

cost function.

2019.09.07.

11

21

SYNTHESIS (1): PLA IMPLEMENTATION

PLA: a plane of AND gates followed with a plane of OR gates,

interconnections can be established by the user.

A B C D
_ _

C D

_ _

A B D

 _ _

A B C

A B C D

_ _

A B C D

 

  

  

    

    











22

SYNTHESIS (1): SOLUTION (POS)

1 1

1

1

1 1

 1

1

C

B

D

A

_ _

A + B + D

etc., altogether six sum

terms, each containing

three variables

2019.09.07.

12

23

SYNTHESIS (1): MACHINE SOLUTION (POS)

24

SYNTHESIS (1): SSI GATES

Conceptual logic diagram (OR-AND):

 6 pc 3-input OR gate,

 1 db 6 input AND gate.

Optimized network: 24 pins (gate inputs).

The extended SOP form (conjunctive canonic form) contains

8 maxterms, therefore 8x4 + 1x8 = 40 pins (gate inputs)

would be needed.

2019.09.07.

13

25

SYNTHESIS (2): SOLUTION (SOP)

1 1

1

X X

1 1

 1

X

X

X

X

C

B

D

A

Divisible by 3: 0,3,6,9

 (12,15 excluded!)

Divisible by 4: 0,4,8

 (12 excluded!)

The logic function:

F = 4((0,3,4,6,8,9) +(10-15))

Optimized:

 _ _ _ _

F = A + C D + B D + B C D

26

SYNTHESIS (2): SOLUTION (SOP)

2019.09.07.

14

27

SYNTHESIS (2): SOLUTION (SOP)
Principal logic diagram consists of:

 one direct connection,

 two 2-input AND gates,

 one 3 input AND gate,

 one 4-input OR gate.

Minimized network: 12 pins (gate inputs).

Implementation (modular logic):

 3/4 7400 (4x2-input NAND)

 1 7420 (2x4-input NAND)

Implementation of the extended SOP form would need

6x4 + 1x6 = 30 gate inputs.

Note: the OR-AND network would result in a somewhat simpler

network (11 pins).

28

SYNTHESIS (2): PLA IMPEMENTATION

PLA: a plane of AND gates followed with a plane of OR gates,

interconnections can be established by the user.

A B C D

A

_ _

C D

 _

B D

_

B C D

 

 

 

  









2019.09.07.

15

29

SYNTHESIS (2): SOLUTION (POS)

30

SYNTHESIS EXAMPLE (3):

2-BIT (SIMPLE) COMBINATIONAL ADDER

A, B, C, D are the inputs, X, Y, Z are the outputs of a

combinational circuit. If the input is interpreted as two 2-bit

numbers (AB, A is the MSB, and CD, C is the MSB), the

output be the sum of the two binary numbers present at the

input, (XYZ, X is the MSB), i. e. XYZ = AB + CD. E. g. 101

= 11 + 10 (binary addition).

Derive the truth table of the network.

Give the simplest Boolean function separately for each

output.

Construct the 2-bit adder.

2019.09.07.

16

31

SYNTHESIS EXAMPLE (3): SOLUTION

2-bit 

A

B

C

D

X

Y

Z

E.g. if A B C D = 1 1 0 1 then X Y Z = 1 1 0

because A B 1 1

 + C D 0 1

 = X Y Z 1 1 0

Two-bit combinational adder

32

SYNTHESIS (3): TRUTH TABLE OF

2-BIT COMBINATIONAL ADDER

A B C D X Y Z

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

... …

1 0 1 0 1 0 0

... … ... … ... … ...

1 1 1 1 1 1 0

From the truth table the logic

functions to be implemented

X = 4(7,10,11,13-15)

Y = 4(2,3,5,6,8,9,12,15)

Z = 4(1,3,4,6,9,11,12,14)

2019.09.07.

17

33

SYNTHESIS (3): AND-OR OPTIMIZATION

X = A C + B C D + A B D

 _ _ _ _ _ _ _ _

Y = A C D + A B C + A C D + A B C

 _ _

 + A B C D + A B C D
(perhaps XOR logic?)

34

SYNTHESIS (3): AND-OR OPTIMIZATION

 _ _

Z = B D + B D (perhaps XOR logic?)

2019.09.07.

18

35

2-BIT BINARY FULL ADDER

Two-bit binary full adders

5482/7482

36

2-BIT BINARY FULL ADDER: DESCRIPTION

2019.09.07.

19

37

ANALYSIS OF 2-BIT ADDERS

2-bit (simple) adder: 11 gates, two-level circuit, delay two

gate units, no input carry, no chaining possibility.

2-bit full adder: 18 gates, more than two levels, delay

longer (four gate units), input carry handling, chaining

possibility.

Outlook: multibit (parallel) adders: define/implement 1-bit

full adder (3 inputs: two operands and carry in, 2 outputs:

sum and carry out), and chain them ….

38

integer number_of_days (month, leap_year_flag) {
switch (month) {

case 1: return (31);
case 2: if (leap_year_flag == 1)

 then return (29)
 else return (28);

case 3: return (31);
case 4: return (30);

case 5: return (31);
case 6: return (30);

case 7: return (31);
case 8: return (31);

case 9: return (30);
case 10: return (31);

case 11: return (30);
case 12: return (31);

default: return (0);
}

}

CALENDAR SUBSYSTEM
Determine number of days in a month (to control watch

display)

Used in controlling the display of a wrist-watch LCD screen

Inputs: month, leap year flag

Outputs: number of days

Use software implementation

to help understand the problem

2019.09.07.

20

leap month

28 29 30 31

month leap 28 29 30 31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

FORMALIZE THE PROBLEM

Encoding:

Binary number for month: 4 bits

4 wires for 28, 29, 30, and 31

one-hot – only one true at any time

Block diagram:

CALENDAR: 31-DAY MONTHS

- 1 1 0

0

1

1

-

1 0

1 0

-

0

-

1

C

B

D

A

Colour code shows the

minimal covering

 — —

F = A D + A D

The don’t care terms can

be used advantageously in

the minimization

2019.09.07.

21

41

CALENDAR: 30-DAY MONTHS

-

1

-

1

1

-

1

-

C

B

D

A

The optimal cover

 _ _

F = A D + A B D

month leap 28 29 30 31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

IMPLEMENTATION

• Discrete gates

– 28 =

– 29 =

– 30 =

– 31 =

• Can translate to S-o-P

or P-o-S

m8’ m4’ m2 m1’ leap’

m8’ m4’ m2 m1’ leap

m8’ m4 m1’ + m8 m1

m8’ m1 + m8 m1’

2019.09.07.

22

PRODUCTION LINE CONTROL

• Rods of varying length (+/-10%) travel on conveyor belt

– Mechanical arm pushes rods within spec (+/-5%) to one

side

– Second arm pushes rods too long to other side

– Rods that are too short stay on belt

– 3 light barriers (light source + photocell) as sensors

– Design combinational logic to activate the arms

• Understanding the problem

– Inputs are three sensors

– Outputs are two arm control signals

– Assume sensor reads "1" when tripped, "0" otherwise

– Call sensors A, B, C

SKETCH OF THE PROBLEM

• Position of Sensors

– A to B distance = specification – 5%

– A to C distance = specification + 5%

Within
Spec

Too
Short

Too
Long

A

B

C

spec
- 5%

spec
+ 5%

2019.09.07.

23

logic implementation now
straightforward
just use three 3-input AND gates

 "too short" = AB'C'
 (only first sensor tripped)

 "in spec" = A B C'
 (first two sensors tripped)

 "too long" = A B C
 (all three sensors tripped)

A B C Function
0 0 0 do nothing
0 0 1 do nothing
0 1 0 do nothing
0 1 1 do nothing
1 0 0 too short
1 0 1 don't care
1 1 0 in spec
1 1 1 too long

FORMALIZE THE PROBLEM

Truth Table

Show don't cares

46

PROGRAMMABLE LOGIC GATE
Construct a programmable logic gate!

The network has two data inputs (A, B) and two control

inputs (F, G).

The gate, depending on the control code should behave as

specified below:

 FG Output

 00 NEGATED A

 01 A AND B

 10 A OR B

 11 A XOR B

Try to reduce the number of gate inputs (pin number) as far

as possible.

2019.09.07.

24

47

TRUTH TABLE / KARNAUGH MAP

1 1

1

1

 1

1

1

1

A

G

B

F

NEGATED A

A AND B

A XOR B

A OR B

48

MINIMAL DISJUNCTIVE COVER

1 1

1

1

 1

1

1

1

A

G

B

F

NEGATED A

A AND B

A XOR B

A OR B

SOP: minimal cover with 21

gate inputs

2019.09.07.

25

49

MINIMAL DISJUNCTIVE COVER

50

MINIMAL CONJUNCTIVE COVER

1 1

1

1

 1

1

1

1

A

G

B

F

NEGATED A

A AND B

A XOR B

A OR B

POS: minimal cover with 21

gate inputs

2019.09.07.

26

51

MINIMAL CONJUNCTIVE COVER

52

AND/OR/XOR VERSION

1 1

1

1

 1

1

1

1

A

G

B

F

_ _ _

F G A
A B (F  G)

F (A  B)

Total pin number: only 15!

However the result will be a

three level network.

2019.09.07.

27

53

AND/OR/XOR IMPLEMENTATION

&




&

&
1

_ _ _

F G A

A B (F  G)

F (A  B)

54

THE QUINE-MCCLUSKEY METHOD

An alternative to using K-maps is the Quine-McCluskey

algorithm. The Quine-McCluskey algorithm provides a

systematic approach for finding the prime implicants and

selecting a minimal cover. It is functionally equivalent to the

Karnaugh mapping, but the tabular form makes it more

efficient for use in computer algorithms, and also give a

deterministic way to check that the minima form of a

Boolean function has been reached. It is sometimes

referred to as the tabulation method.

2019.09.07.

28

55

COMPLEXITY

The tabular method is more practical than Karnaugh mapping

when dealing with more than four variables, it has also a

limited range of use since the runtime of the algorithm grows

exponentially with the input size.

For a function of n variables the upper bound on the number

of prime implicants is 3n/n (i.e. 20 for n = 4, 48 for n =5, 121

for n = 6, 312 for n = 7, etc.). If n = 32 there may be over

6,5x1015 prime implicants.

Functions with a large number of variables have to be

optimized with potentially non-optimal heuristic methods.

56

ADJACENCY OF MINTERMS

The minimization is based on finding and grouping the

adjacent minterms, then terms, till the further not reducible

prime implicants are arrived at.

The necessary and sufficient condition of the adjacency of

two minterms can be given by three statements, which

should be fulfilled simultaneously.

It is important the these three statements (conditions) can

be given based only on the lower indexes of the minterms.

Note: see Arató’s text for details.

2019.09.07.

29

57

ADJACENCY CONDITION NO. 1

Two minterms are adjacent, if the difference between their

decimal index is a power of two.

 — — — — — — —

 6 0110 A B C D + A B C D  A C D

 2 0010

 4

This is a necessary but not suffcient condition.

Counterexample: it is fulfilled for minterms with index 2 (i.e.

0010) and 4 (i.e. 0100), however they are not adjacent.

58

ADJACENCY CONDITION NO. 2

Two minterms are adjacent, if their binary weights (number

of 1s) differ by 1.

 _ _ _ _ _ _ _

 6 0110 (2) A B C D + A B C D  A C D

 2 0010 (1)

 4 (1)

This is also necessary but not sufficient condition, because

just this is the condition which is not fulfilled for minterms m2

and m4 figuring in the previous counterexample.

2019.09.07.

30

59

ADJACENCY CONDITION NO. 3

Two minterms are adjacent, if, the decimal index of the

minterm with larger binary weight is also larger than the

decimal index of the other minterm.

 _ _ _ _ _ _ _

 6 0110 2 A B C D + A B C D  A C D

 2 0010 1

 4 1

 6  2 and 2  1

This is also a necessary but in itself not sufficient condition,

because e.g. the minterms m7 and m9, for which the first two

conditions are fullfilled, fail this 3rd condition.

60

QUINE-MCCLUSKEY ALGORITHM

It can be exaclty proven that the simultaneous fullfillement of

the three conditions stated above is not only necessary but

also sufficient condition for the adjacency of the two minterms

in question.

This forms the basis of the Quine-McCluskey algorithm.

2019.09.07.

31

61

QUINE-MCCLUSKEY ALGORITHM

The Quine-McCluskey algorithm of numeric or tabular

minimization analyzing solely the minterm indices based on

these three conditions finds all possible adjacent pairs of

minterms, then it repeats the process till finds all the prime

implicants.

The method therefore involves the following two steps:

1. Finding all prime implicants of the function.

2. Use those prime implicants in a prime implicant chart to find

the essential prime implicants of the function, as well as

other prime implicants that are necessary to cover the

function.

Q-M WORKED EXAMPLE

F(A,B,C) = 3(1,2,3,6,7) is to be minimized

Group and arrange minterms in an implicant table according

to their Hamming weight. Neighbours can differ only in one

place. Minterms in group 2 can have neighbours only from

group 1 or 3.

001 HW = 1 (1) m1, m2

010 1 (2) m3, m6

011 2 (3) m7

110 2

111 3

2019.09.07.

32

IMPLICANT TABLE

Size Minterms

m(i)

One-cube

m(i,j)

Two-cube

m(i,j,k,l)

1 m1

m2

1,3 (2) *

2,3 (1)

2,6 (4)

2,3,6,7 (1,4) *

2 m3

m6

3,7 (4)

6,7 (1)

3 m7

All terms should be accounted for. Terms which cannot be

merged further are the prime implicants (*).

Merge terms from adjacent groups with

decimal index differing by 1, 2, 4, 8, etc. Mark

terms used. Terms can be used several times.

COVERING TABLE

Prime implicants Minterms

 1 2 3 6 7

(2,3,6,7) * X X X X

(1,3)* X X

Construct a prime implicant or covering table as shown.

The minterm m2 occurs only in one column, therefore

m(2,3,6,7) is an essential prime implicant. This takes care of

m3, m6, and m7 too. Continue … m(1,3) is also necessary

because of m1.

 _

 F(A,B,C) = m(2,3,6,7) + m(1,3) = B + A C

 X 1 X 0 X 1

2019.09.07.

33

65

Using the Q-M Procedure with

Incompletely Specified Functions

1. Use minterms and don’t cares when generating

prime implicants

2. Use only minterms when finding a minimal

cover

2019.09.07.

34

67

REVIEW QUESTIONS

1. What are the don’t-care conditions?

2. Explain the terms (a) prime implicant, and (b) essential

prime implicant, (c) non-essential prime implicant.

3. List and discuss the necessary conditions for establishing

adjacency when applying the numerical/tabular minimization

(Quine-McCluskey algorithm).

4. Find and download from the the internet an appropriate

software for Karnaugh map and Quine-McCluskey

minimization, and learn its use.

68

PROBLEMS AND EXERCISES

1. Give the Karnaugh map of the 4-input (A,B,C,D) single output (F)

combinational circuit, the output of which is 1 if

- inputs A and B have different values when inputs C and D have the

same value,

or

- input B is the same as input D when inputs A and C have different

values.

When writing the Karnaugh map take into account that those input

combinations where all inputs have the same value never occur.

2. Given the three-variable logic function

 F(A,B,C) = 3(0,2,3,4)

Find the minimized product-of-sums (POS) form.

 _ _

(ANS: F= (A + B) (B + C))

2019.09.07.

35

69

PROBLEMS AND EXERCISES

3. Draw the simplest two-level AND-OR as well as the

simplest two-level OR-AND logic diagrams for the following

logic functions:

 F = Σ4 (1,2,3,5,9,10,11,14)

 G = Σ4 (6,9,10,11,14,15)

 H = Σ4 (0,4,6,8,12,14)

HINT: Use Karnaugh maps

70

PROBLEMS AND EXERCISES

4. In the Karnaugh map below, d means don’t care, i.e. we

can assign either a 0 or 1 to a cell which contains a d.

Using these don’t care terms, find the simplest logic

 expression and realization of the function.

(Source: D. L. Schilling, C. Belove, Electronic circuits:

Discrete and integrated, McGraw-Hill, Inc., 1983)

2019.09.07.

36

PROBLEMS AND EXERCISES

71

5. Three-way light control switch problem. Assume a large

room has three doors and that a switch near each door

controls a light in the room. The light is turned on or off by

changing the state of any one of the switches. More

specifically, the following should happen:

a. The light is OFF when all three switches are open.

b. Closing any one switch will turn the light ON.

c. Then closing the second switch will have to turn OFF

the light.

d. If the light is off when the two switches are closed, then

by closing the third switch

 the light will turn ON.

PROBLEMS AND EXERCISES

72

6. Using the Quine-McCluskey method

 a. find all prime implicants of the function below,

 b. determine the minimal cover.

 F(A, B, C, D) = 4(0, 4, 5, 6, 7, 9, 11, 13, 14)

ANS/HINT:

Six prime implicants be found (see K-map below). Four of

them are essential prime implicants, and any one of the

remaining two prime implicants added will result in minimal

cover.

Therefore two equivalent minimal circuits exist.

2019.09.07.

37

73

PROBLEMS AND EXERCISES

K-map for problem 6.

PROBLEMS AND EXERCISES

74

7. A “coincidence unit” has four binary inputs A0, A1, A2, A3 and two

binary outputs B0, B1. If one or zero of the inputs is HIGH, then the

outputs remain LOW. If two or more inputs are HIGH, then the outputs

encode a 2-bit binary number, which is the address of the most

significant HIGH input. (A3 is the MSB). For example, A3A2A1A0 =

0100 gives B1B0 = 00, and A3A2A1A0 = 0111 gives B1B0 = 2.

a. Find minimized logic

expressions for B0 and B1.

b. Implement your circuit with standard gate logic. It should be possible

to do this with gates having no more than two inputs.

2019.09.07.

38

75

KARNAUGH MAP SOFTWARES

kmap12.exe www.puz.com/sw/karnaugh/

kmin.zip karnaugh.shuriksoft.com/

KMapSimulator.zip members.cox.net/cyclone1980/

KMapSimulation10Embedded.htm

Bmin Karnaugh map, Quine-McCluskey, Espresso

The softwares can handle both algebraic forms:

SOP: sum-of-products, disjunctive algebraic form

POS: product-of-sums, conjunctive algebraic form

Some softwares can also handle don’t care terms.

76

END OF LECTURE

