
2019.09.07.

1

1

DIGITAL TECHNICS I

Dr. Bálint Pődör

Óbuda University, Microelectronics and Technology Institute

6. LECTURE:

COMBINATIONAL CIRCUITS, HAZARDS

 1st year BSc course 1st (Autumn) term 2018/2019

2

6. LECTURE

1. Some aspects of combinational circuits : symmetric

functions and XOR logic.

2. Some aspects of combinational circuits : multiple

output networks.

3. Hazards in combinational logic circuits.

2019.09.07.

2

3

SYMMETRIC BOOLEAN FUNCTIONS

If the variables of a function can be interchanged with each

other (permuted) without changing the value of the function,

the its called symmetric function.

Examples of symmetric function: XOR, XNOR, sum function

of the full adder, Si = AiBiCi-1, etc.

E.g. for n=3 (A,B,C) if A and B can be interchanged with each

other, but neither of them with C, the function is partially

symmetric with respect of the pair of variables, A and B.

The symmetry therefore can be full or partial.

4

EXCLUSIVE OR LOGIC

The symmetric functions have special characteristics, like

they form a ”chessboard” pattern on the Karnaugh map (at

least partially), and they can be simplified by using XOR

functions as functional elements.

Reduction of a function to XOR form is characterized by a

Karnaugh map where the 1s are diagonally opposite to each

other.

In the general context of minimization of Boolean functions

XOR gates can, for certain problems, provide a more

economic implementation than by using other logic gate s.

Two examples are the 1-bit full adder, and the binary-to-Gray

code conversion.

2019.09.07.

3

5

UTILIZATION OF SYMMETRY: EXAMPLE

AND-OR (NAND-NAND) implementation: 8 pins 3 gates

Implementation using XOR: 4 pins 2 gates

Symmetry: partial, with respect to A and B

XOR, XNOR

Look for “checkerboard”

squares

Depends whether

XOR/XNOR gates

available

6

UTILIZATION OF SYMMETRY: EXAMPLE

AND-OR (NAND-NAND) implementation: 8 pins 3 gates

Implementation using XOR: 4 pins 2 gates

Symmetry: partial, with respect to A and B

 

= C (A  B)

2019.09.07.

4

7

)D,C,B,A(F)DB(AC )DA(CB 

UTILIZATION OF SYMMETRY: EXAMPLE

Chessboard pattern

8

OUTLOOK: Si (SUM) FUNCTION

OF THE 1-BIT FULL ADDER

D
i

0 1

1 0

1 0

0 1

0 1

2 3

4 5

6 7

A
i

B
i

C
i-1

A
i

B
i

C
i-1

i

(4) (2) (1)

0

1

2

3

4

5

6

7

0

0

0
0

1
1
1

1

0

0

0
0

1
1

1

1

0

0

0

1

1

1

0

1

D
i

1

0

0
1

1

1

0
0

„chessboard pattern”

symmetric function

Sum function Si = Ai  Bi  Ci-1

Si

Si
=1

=1

Ai

Bi

Ci-1

Si

Ai, Bi operands i-th position

Ci-1 carry-in from (i-1)-th

position

2019.09.07.

5

9

EXAMPLE: PARTIALLY SYMMETRIC

FUNCTIONS

Pin counts:

 AND/OR implementation (2 level): 11

 AND/OR/XOR implementation (3 level): 8

 _ _ _ _

AND-OR: F = A B C + A B C + C D

Chessboard pattern (right half of the map)

10

POSSIBLE IMPLEMENTATIONS

&

&

&

1

&

&


1

 _ _ _ _

 F = A B C + A B C + C D
 _ _

F = (A  B) C + C D

AND-OR AND-OR-XOR

2019.09.07.

6

11

MINIMIZATION AND IMPLEMENTATION

OF MULTIPLE OUTPUT NETWORKS

b

a

a,b

a

 b

C

B

D

A

Fa = 4(5,12,13)

Fb = 4(3,5,7)

”Elementary” implementation:

four 3-input AND gates and

two 2-input OR gates

Cost function (pin count):

4x3 + 2x2 = 16

12

MINIMIZATION AND IMPLEMENTATION

OF MULTIPLE OUTPUT NETWORKS

b

a

a,b

a

 b

C

B

D

A

Fa = 4(5,12,13)

Fb = 4(3,5,7)

Utilization of common

implicants and prime

implicants

2019.09.07.

7

MINIMIZATION AND IMPLEMENTATION

OF MULTIPLE OUTPUT NETWORKS

13

& & &

1 1

 Fa Fb

 _ _ _ _

A B C A B C D A C D

Pin count: 14

EXAMPLE: MINIMIZATION OF THREE

OUTPUT FUNCTION

14

Determine the simplest conceptual two-level AND-OR

logic diagram of the three output logic network:

 Fa = 4(0,1,5,6,7,13)

 Fb = 4(0,1,5,10-15)

 Fc = 4(0,1,8-11,14,15)

The common prime implicants of Fa and Fb are the prime

implicants of the product function Fab = FaFb, etc.

2019.09.07.

8

COMMON (PRIME) IMPLICANTS

15

Product functions (pairs):

 Fa = 4(0,1,5,6,7,13)

 Fb = 4(0,1,5,10-15)

 Fc = 4(0,1,8-11,14,15)

Fab = FaFb = 4(0,1,5,13) = m(0,1) + m(5,13)

Fbc = FbFc = 4(0,1,10,11,14,15) = (0,1) + m(10,11,14,15)

Fca = FcFa = 4(0,1) = m(0,1)

RESULT OF MINIMIZATION

16

Principle: the common prime implicants occurring in more

outputs are implemented only once.

Fa,Fb,Fc: /A /B /C m(0,1)

Fa,Fb: B /C D m(5,13)

Fa,Fb: A C m(10,11,14,15)

2019.09.07.

9

17

RESULT OF MINIMIZATION

a,b,c a,b,c

b

a,b

a,b

c c

 a a

b,c

b,c

b,c

b,c

C

B

D

A

18

BCD to 7–segment
control signal

decoder

c0 c1 c2 c3 c4 c5 c6

A B C D

ANOTHER DEMO EXAMPLE: BCD TO

7-SEGMENT DISPLAY CONTROLLER

• Understanding the problem

– Input is a 4 bit BCD digit (A, B, C, D)

– Output is the control signals for the display (7 outputs

C0 – C6)

• Block diagram c1 c5

c2 c4
c6

c0

c3

2019.09.07.

10

19

A B C D C0 C1 C2 C3 C4 C5 C6

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 0 0 1 1

1 0 1 – – – – – – – –

1 1 – – – – – – – – –

FORMALIZE THE PROBLEM

• Truth table

– Show don't cares

• Choose implementation

target

– If ROM, we are done

– Don't cares imply PAL/PLA

may be attractive

• Follow implementation

procedure

– Minimization using K-maps

20

C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'
C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

IMPLEMENTATION AS MINOMIZED

SUM-OF-PRODUCTS (SOP)

• 15 unique product terms when minimized individually

1 0 X 1

0 1 X 1

1 1 X X

1 1 X X

D

A

B

C

1 1 X 1

1 0 X 1

1 1 X X

1 0 X X

D

A

B

C

0 1 X 1

0 1 X 1

1 0 X X

1 1 X X

D

A

B

C

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

1 0 X 1

0 1 X 0

1 0 X X

1 1 X X

D

A

B

C

1 0 X 1

0 0 X 0

0 0 X X

1 1 X X

D

A

B

C

1 1 X 1

0 1 X 1

0 0 X X

0 1 X X

D

A

B

C

2019.09.07.

11

21

EXAMPLE: MINIMIZATION OF C0

22

EXAMPLE: MINIMIZATION OF C0

1 0 1 1

0

-

1

-

1 1

1 1

-

-

-

-

C

B

D

A

 C0

 _ _

C0 = A + C + B D + B D

2019.09.07.

12

23

C0 = B C' D + C D + B' D' + B C D' + A
C1 = B' D + C' D' + C D + B' D'
C2 = B' D + B C' D + C' D' + C D + B C D'
C3 = B C' D + B' D + B' D' + B C D'
C4 = B' D' + B C D'
C5 = B C' D + C' D' + A + B C D'
C6 = B' C + B C' + B C D' + A

C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'
C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

C2

IMPLEMENTATION AS MINIMIZED SOP

(CONT’D)

• Can do better

– 9 unique product terms (instead of 15)

– Share terms among outputs

– Each output not necessarily in minimized form

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

C2

24

BC'

B'C

B'D

BC'D

C'D'

CD

B'D'

A

BCD'

A B C D

C0 C1 C2 C3 C4 C5 C6 C7

PLA IMPLEMENTATION

2019.09.07.

13

25

CAUSES OF SIGNAL PROPAGATION

DELAYS

1. Real gate: in response to a change at the input the

output changes in a short but finite (nonzero) time.

The time necessary to reach the new value of the output:

propagation delay.

2. Interconnections: Finite velocity of propagation of

electromagnetic waves, delays caused by stray

capacitances and inductances.

26

SIGNAL PROPAGATION DELAY

Ideal case: the gates generate the output signals

simultaneously with the appearance of input signals, and

no time is necessary for signal propagation through the

interconnections.

Real case: the gates generate the output signals only with

time delay, and the propagation velocity through the

interconnections is finite, resulting in an additional delay.

2019.09.07.

14

A NOR GATE WITH A LUMPED DELAY

Lumped element model:

real gate = ideal gate +”lumped delay element”

28

HAZARDS

The signal propagation delays can cause transitory

erroneous operation of the logic networks. Such erroneous

phenomena, occurring governed by chance, are called

hazards.

The cause of hazards is the timing delay of different

components in the logic circuit. The resulting glitches in the

circuit may or may not induce additional problems - other

than increased issues due to switching noise.

It is good design practice to design circuits to minimize

these hazards.

2019.09.07.

15

29

HAZARDS
A hazard or glitch in digital logic is a fault in the logic system

due to a change at the input. A static hazard is when the

output of a logic circuit momentarily changes when its final

value is the same as its value before the hazard (when the

output is "trying" to remain the same, it jumps once, then

settles down). A dynamic hazard (or oscillation hazard) is

where a logic circuit will momentarily change back to its

original value while changing to a new value.

The cause of hazards is the timing delay of different

components in the circuit. The resulting glitches in the

circuit may or may not induce additional problems - other

than increased issues due to switching noise. It is good

design practice to design circuits to minimize these

hazards.

30

ANALYSIS OF STATIC HAZARDS

The change sequence of the input states and variables can

be followed using the K map.

 Loops in the K map

 corresponding to the

 AND gates.

A B C D

0 1 1 0

0 1 1 1

1 1 1 1

1 0 1 1

1 0 1 0

Control handover

between AND gates:

static hazards

2019.09.07.

16

31

HAZARD PHENOMENA

HAZARD

The pulse „0” or „1” on the output is caused not by the logic

conditions. The delays may depend on various and

unexpected circumstances (e.g. self-heating of the circuit,

etc.), therefore cannot be always controlled.

HAZARD TYPES

Static hazard

 „0”-type hazard

 „1”-type hazard

Dynamic hazard

Functional hazard (not shown)

32

STATIC HAZARDS

There are two types of static hazards: a low-going glitch (or

static one hazard) is where the high output transitions to a

low and back high (1-0-1) and a high-going glitch (or static

zero hazard) is where the low output transitions to a high and

back low (0-1-0).

2019.09.07.

17

33

STATIC HAZARDS

Static 0 hazards occur in product-of sums implementations,

but do not occur in sum-of-products implementations. Static 1

hazards occur in sum-of-products implementations, but do

not occur in product-of sums implementations.

Adding logic redundancy using a Karnaugh map is the

easiest way to eliminate static hazards.

Static hazards can be eliminated using a sum-of-product s

implementation containing every prime implicant.

34

STATIC HAZARD IN

COMBINATIONAL CIRCUITS
 —

F(ABC) = AB + AC

 _

ABC = 111  ABC = 011

1

&

&

1

•
A

B

C

F

t1
t3

t4

t6

If

t1+t3  t4+t6

on the output

1  0  1

change will occur!

2019.09.07.

18

35

STATIC HAZARD

The brief pulse or glitch in the

output is caused by the propa-

gation delay difference of the

signals through the gates.

Measured width at 50% level:

app. 40 nsec, series 74 one

gate average delay app. 13

nsec.

(Student’s measurement.)

1 cm = 100 nsec

36

STATIC HAZARD IN COMBINATIONAL

CIRCUITS

1

1

1

1

B

A

C

 —

F(ABC) = AB + AC

critical transition:

 _

ABC = 111  ABC = 011

1

&

&

1

•
A

B

C

F

2019.09.07.

19

37

ELIMINATION OF STATIC HAZARD (1)

1

1

1

1

B

A

C
Elimination of static hazard: it is

necessary to prevent the influence of

critical transition, for this the BC prime

implicant should also be covered.

 —

F(ABC) = AB + AC + BC

Critical transition:

 _

ABC = 111  ABC = 011

38

ELIMINATION OF STATIC HAZARD (2)

1

1

1

1

B

A

C

&

&

1

• A

B

C F

&

1

2019.09.07.

20

39

SYNTHESIS OF NETWORKS FREE OF

STATIC HAZARDS

The two-level AND-OR network is free of static hazard only if

for any/all pairs of adjacent input combinations generating a

value of 1 on the output the is an AND gate the output of

which is 1 for both adjacent input combination.

In other words: for any two adjacent minterms there is at

least one prime implicant in the circuit covering both

minterms.

40

STATIC HAZARDS

1 1

1

 1 1

1

1

1

C

B

D

A

K maps are useful for

detecting and eliminating

race hazards.

 _

An additional term BC

would eliminate the

potential race hazards,

bridging between the green

and blue output state or

blue and red output states.

2019.09.07.

21

41

ELIMINATION OF RACE HAZARDS

1 1

1

 1 1

1

1

1

C

B

D

A

 _

An additional term BC

eliminates the potential

race hazards, bridging

between the green and

blue output state or blue

and red output states.

The term is redundant in

terms of the logic state of

the system, but such

redundant terms are often

needed to assure race-free

dynamic performance.

42

SYNTHESIS OF NETWORKS FREE OF

STATIC HAZARDS GUIDELINES

Guidelines for synthesis:

The simplest static hazard free disjunctive form (SOP) can

be obtained by adding the possible minimum number and

simplest prime implicants to the simplest disjunctive form

(SOP) to fulfill the necessary covering conditions.

2019.09.07.

22

43

STATIC HAZARD IN PRODUCT-OF-SUM

NETWORKS

The above analysis can also be applied to the two-level

OR-AND networks..

The only modification is that the maxterms should be

considered, an in case of necessity the redundant OR gates

ensuring the covering of adjacent loops should be included

into the network.

44

EXAMPLE: HAZARD ELIMINATION

IN TWO-LEVEL NETWORKS

Construct the static hazard free conceptual AND-OR logic

diagram of the function given in its simplest SOP form

 _ _ _ _ _

 F(A,B,C,D) = B D + A B C + A C D + B C D

Discuss the NAND gate based implementation, and as an

alternative the PLA based implementation too.

(74LS00 4x2 input, 74LS20 2x4 input, 74LS30 1x8 input

NAND gates).

2019.09.07.

23

45

KARNAUGH MAP: MINIMAL COVER

1 1 1

1

1

 1

1

1 1

C

B

D

A

 _ _ _ _ _

 F(A,B,C,D) = B D + A B C + A C D + B C D

46

POTENTIAL STATIC HAZARDS

1 1 1

1

1

 1

1

1 1

C

B

D

A

 _ _ _ _ _

 F(A,B,C,D) = B D + A B C + A C D + B C D

Hazards can occur

for three transitions:

0 0 0 0  0 0 1 0

0 0 0 1  0 1 0 1

1 0 1 0  1 0 1 1

2019.09.07.

24

47

ELIMINATION OF HAZARDS

1 1 1

1

1

 1

1

1 1

C

B

D

A

 _ _ _ _ _

 F(A,B,C,D) = B D + A B C + A C D + B C D

Three additional

loops are necessary

to eliminate the

hazards

48

2019.09.07.

25

49

QUINE-MCCLUSKEY SUMMARY

Minimal cover: 4 prime implicants, remaining 3 non-essential

prime implicants, however they are needed for hazard

elimination.

50

SUMMARY

 _ _ _ _ _

 F(A,B,C,D) = B D + A B C + A C D + B C D

To eliminate the static hazards in the minimal network

realized by its four essential prime implicants, it should be

be complemented by three redundant prime implicants:

 _ _ _ _ _ _

 A C D, A B C, A B D

The hazard free network contains one 2-input AND gate,

six 3-input AND gate and one 7-input OR gate.

2019.09.07.

26

51

IMPLEMENTATION WITH NAND GATES

Implementation with NAND gates: (AND-OR  NAND-

NAND)

Minimal cover:

 74LS00 (4x2 input) 1/4

 74LS20 (2x4 input) 1 1/2

 74LS30 (1x8 input) 1

Hazard free network:

 74LS00 (4x2 input) 1/4

 74LS20 (2x4 input) 3

 74LS30 (1x8 input) 1

52

STATIC HAZARDS IN INCOMPLETELY

SPECIFIED NETWORKS

If the logic function to be realized is incompletely specified,

i.e. it contains don’t care terms, then the method and

approach of obtaining the simplest static hazard free two-

level logic network is less systematic.

2019.09.07.

27

53

HAZARD ELIMINATION ANALYSIS WITH

DON’TCARE TERMS

1

X

 1

1 X

1

C

B

D

A

Cover minimization

followed by hazard

elimination using redundant

prime implicant (all prime

implicants included):

m(5,7,13,15) + m(10,14) +

m(14,15)

The prime implicant

m(14,15) is really

necessary?

This depends on the

interpretation of the X

terms!

54

HAZARD FREE MINIMAL COVER

1

X

 1

1 X

1

C

B

D

A

m(5,7,13,15) + m(10)

3 gates/8 pins

Previous version:

4 gates/11 pins

Approach: mostly

heuristic

2019.09.07.

28

55

STATIC HAZARDS IN INCOMPETELY

SPECIFIED NETWORKS

The construction of minimal hazard free two-level network

for the incompletely specified logic functions might depend

on the interpretation of don’t care terms.

If the hazard elimination should be performed for the don’t

care terms too, then in the assignment of value for the don’t

care terms is not always and necessarily based on the

consideration of obtaining the simplest prime implicants.

In such cases the simplification process might include

heuristic (trial-and-error) steps too.

56

DYNAMIC HAZARD

Dynamic hazard occurs, when in the case of the change of a

single input should result a single change of the output (e.g.

input: 10, output 0 1) , but instead of it the stationary

output is reached only with an additional (double) jump (e.g.

0 1 0 1).

2019.09.07.

29

57

DYNAMIC HAZARD

Dynamic hazards can only occur in three-level networks or

above, if on any of the levels a static hazard is present.

Therefore eliminating the possible static hazards on each

individual level, the dynamic hazard is also eliminated

automatically.

58

FUNCTIONAL HAZARD

B C

A 1 1 1

1

0

0 0 0

B C

A 1 1 1

1

0

0 0 0

B C

A 1 1 1

1

0

0 0 0

11 101 111

It can occur if two or more input variables change

simultaneously.

E.g. for the transition 101110 two different time sequence

is possible, therefore on the output an unwanted 0 state can

occur for a short time.

2019.09.07.

30

59

ELIMINATION OF FUNCTIONAL

HAZARDS

The best method to eliminate the functional hazards to

disallow the non adjacent input changes. This should be

made in the unit generating the input combinations.

The other possibility is to use synchronizing and clock

signal.

60

REVIEW QUESTIONS

1. Define the concept of symmetric and partially symmetric Boolean

functions and give appropriate illustrative examples.

2. Describe the structure and properties of symmetric and partially

symmetric functions on the Karnaugh map. Discuss their implementation

using AND-OR-XOR logic.

3. Define and describe the concept, cause, and effects of hazards in a

combinational circuit.

4. Define and explain the following concepts: static hazard, dynamic

hazard and functional hazard.

4. Describe and discuss the method of elimination of static hazards in a

combinational circuit.

5. Describe the main steps of the Quine-McCluskey algorithm for finding

the prime implicants and to establish the minimal cover.

2019.09.07.

31

61

PROBLEMS AND EXERCISES

1. Implement the logic function shown below:

(a) using a two level minimal system (minimal cover),

(b) without static hazard.

F(A,B,C,D,E) = 5 (2,6,8,10,12,14,17,19,21,23,26,27,30,31)

(HINT: the minimized SOP form contains five 4-cube (i.e. 3-

variable) loops. Two additional product terms are necessary

to eliminate the static race hazards.)

Supplementary exercise: Repeat the minimization using the

Quine-McCluskey algorithm too.

62

PROBLEMS AND EXERCISES

2. Analyze the combinational circuit shown below.

 - Is it minimal?

 - Is it free of static hazard?

 If not, reengineer the circuit to obtain the minimal hazard-

free form!

.

2019.09.07.

32

63

PROBLEMS AND EXERCISES

3. Using the Quine-McCluskey method find all prime implicants

of the function below. Give also the minimal cover.

 F(A, B, C, D) = 4(0, 4, 5, 6, 7, 9, 11, 13, 14)

64

 END OF LECTURE

