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6. LECTURE 

1. Some aspects of combinational circuits : symmetric 

functions and XOR logic. 

 

2. Some aspects of combinational circuits : multiple 

output networks. 

  

3. Hazards in combinational logic circuits.  

 



2019.09.07. 

2 

3 

SYMMETRIC BOOLEAN FUNCTIONS 

If the variables of a function can be interchanged with each 

other (permuted) without changing the value of the function, 

the its called symmetric function. 

 

Examples of symmetric function: XOR, XNOR, sum function 

of the full adder, Si = AiBiCi-1, etc. 

 

E.g. for n=3 (A,B,C) if A and B can be interchanged with each 

other, but neither of them with C, the function is partially 

symmetric with respect of the pair of variables, A and B. 

 

The symmetry therefore can be full or partial.  
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EXCLUSIVE OR LOGIC 

The symmetric functions have special characteristics, like 

they form a ”chessboard” pattern on the Karnaugh map (at 

least partially), and they can be simplified by using XOR 

functions as functional elements. 

 

Reduction of a function to XOR form is characterized by a 

Karnaugh map where the 1s are diagonally opposite to each 

other. 

 

In the general context of minimization of Boolean functions 

XOR gates can, for certain problems, provide a more 

economic implementation than by using other logic gate s.  

 

Two examples are the 1-bit full adder, and the binary-to-Gray 

code conversion. 
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UTILIZATION OF SYMMETRY: EXAMPLE 

AND-OR (NAND-NAND) implementation: 8 pins 3 gates  

 

Implementation using XOR: 4 pins 2 gates 

 

Symmetry: partial, with respect to A and B 

XOR, XNOR 

Look for “checkerboard” 

squares 

Depends whether 

XOR/XNOR gates 

available 
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UTILIZATION OF SYMMETRY: EXAMPLE 

AND-OR (NAND-NAND) implementation: 8 pins 3 gates  

 

Implementation using XOR: 4 pins 2 gates 

 

Symmetry: partial, with respect to A and B 

 

         

= C (A  B) 
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)D,C,B,A(F )DB(AC )DA(CB 

UTILIZATION OF SYMMETRY: EXAMPLE 

        

Chessboard pattern 
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OUTLOOK: Si (SUM) FUNCTION  

OF THE 1-BIT FULL ADDER 
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„chessboard pattern” 

symmetric function 

Sum function   Si = Ai  Bi  Ci-1  

Si 

Si 
=1 

=1 

Ai 

Bi 

Ci-1 

Si 

Ai, Bi operands i-th position 

Ci-1 carry-in from (i-1)-th 

position 
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EXAMPLE: PARTIALLY SYMMETRIC 

FUNCTIONS 

Pin counts: 

 AND/OR implementation (2 level):  11 

 AND/OR/XOR implementation (3 level):   8 

           _        _            _  _ 

AND-OR: F = A B C + A B C + C D 

Chessboard pattern (right half of the map) 
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POSSIBLE IMPLEMENTATIONS 

& 

& 

& 

1 

& 

& 
 

1 

          _        _            _  _ 

 F = A B C + A B C + C D 
                _  _ 

F = (A  B) C + C D 

AND-OR    AND-OR-XOR 
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MINIMIZATION AND IMPLEMENTATION 

OF MULTIPLE OUTPUT NETWORKS 

b 

a 

a,b 

a 

 b   

C 

B 

D 

A 

Fa = 4(5,12,13) 

 

Fb = 4(3,5,7) 

 

”Elementary” implementation: 

four 3-input AND gates and 

two 2-input OR gates 

 

Cost function (pin count): 

4x3 + 2x2 = 16 

12 

MINIMIZATION AND IMPLEMENTATION 

OF MULTIPLE OUTPUT NETWORKS 

b 

a 

a,b 

a 

 b   

C 

B 

D 

A 

Fa = 4(5,12,13) 

 

Fb = 4(3,5,7) 

Utilization of common  

implicants and prime 

implicants 
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MINIMIZATION AND IMPLEMENTATION 

OF MULTIPLE OUTPUT NETWORKS 

13 

& & & 

1 1 

     Fa                                                  Fb 

             _                _         _                      _ 

A    B    C                A   B   C   D                A   C    D 

Pin count: 14 

EXAMPLE: MINIMIZATION OF THREE 

OUTPUT FUNCTION 

14 

Determine the simplest conceptual two-level AND-OR 

logic diagram of the three output logic network: 

  

  Fa = 4(0,1,5,6,7,13) 

  

  Fb = 4(0,1,5,10-15) 

  

  Fc = 4(0,1,8-11,14,15) 

  

The common prime implicants of Fa and Fb are the prime 

implicants of the product function Fab = FaFb, etc. 
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COMMON (PRIME) IMPLICANTS 

15 

Product functions (pairs): 

  

 Fa = 4(0,1,5,6,7,13) 

  

 Fb = 4(0,1,5,10-15) 

 

 Fc = 4(0,1,8-11,14,15) 

 

Fab = FaFb = 4(0,1,5,13) = m(0,1) + m(5,13) 

 

Fbc = FbFc = 4(0,1,10,11,14,15) = (0,1) + m(10,11,14,15) 

  

Fca = FcFa = 4(0,1) = m(0,1) 

RESULT OF MINIMIZATION 

16 

Principle: the common prime implicants occurring in more 

outputs are implemented only once.  

Fa,Fb,Fc:  /A /B /C m(0,1) 

Fa,Fb:  B /C D  m(5,13) 

Fa,Fb:  A C  m(10,11,14,15) 
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RESULT OF MINIMIZATION 

a,b,c a,b,c     

b 

a,b 

a,b 

c c 

 a  a 

b,c 

b,c 

b,c 

b,c 

C 

B 

D 

A 

18 

BCD to 7–segment 
control signal 

decoder 

c0  c1  c2  c3  c4  c5  c6 

A   B   C   D 

ANOTHER DEMO EXAMPLE: BCD TO  

7-SEGMENT DISPLAY CONTROLLER 

• Understanding the problem 

– Input is a 4 bit BCD digit (A, B, C, D) 

– Output is the control signals for the display (7 outputs 

C0 – C6) 

• Block diagram c1 c5 

c2 c4 
c6 

c0 

c3 
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A B C D C0 C1 C2 C3 C4 C5 C6 

0 0 0 0 1 1 1 1 1 1 0 

0 0 0 1 0 1 1 0 0 0 0 

0 0 1 0 1 1 0 1 1 0 1 

0 0 1 1 1 1 1 1 0 0 1 

0 1 0 0 0 1 1 0 0 1 1 

0 1 0 1 1 0 1 1 0 1 1 

0 1 1 0 1 0 1 1 1 1 1 

0 1 1 1 1 1 1 0 0 0 0 

1 0 0 0 1 1 1 1 1 1 1 

1 0 0 1 1 1 1 0 0 1 1 

1 0 1 – – – – – – – – 

1 1 – – – – – – – – – 

FORMALIZE THE PROBLEM 

• Truth table 

– Show don't cares 

• Choose implementation 

target 

– If ROM, we are done 

– Don't cares imply PAL/PLA 

may be attractive 

• Follow implementation 

procedure 

– Minimization using K-maps 

20 

C0 = A + B D + C + B' D' 
C1 = C' D' + C D + B' 
C2 = B + C' + D 
C3 = B' D' + C D' + B C' D + B' C 
C4 = B' D' + C D' 
C5 = A + C' D' + B D' + B C' 
C6 = A + C D' + B C' + B' C 

IMPLEMENTATION AS MINOMIZED  

SUM-OF-PRODUCTS (SOP) 

• 15 unique product terms when minimized individually 

1    0    X    1 

0    1    X    1  

1    1    X    X 

1    1    X    X  

D 

A 

B 

C 

1    1    X    1 

1    0    X    1  

1    1    X    X 

1    0    X    X  

D 

A 

B 

C 

0    1    X    1 

0    1    X    1  

1    0    X    X 

1    1    X    X  

D 

A 

B 

C 

1    1    X    1 

1    1    X    1  

1    1    X    X 

0    1    X    X  

D 

A 

B 

C 

1    0    X    1 

0    1    X    0  

1    0    X    X 

1    1    X    X  

D 

A 

B 

C 

1    0    X    1 

0    0    X    0  

0    0    X    X 

1    1    X    X  

D 

A 

B 

C 

1    1    X    1 

0    1    X    1  

0    0    X    X 

0    1    X    X  

D 

A 

B 

C 
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EXAMPLE: MINIMIZATION OF C0 

22 

EXAMPLE: MINIMIZATION OF C0 

1 0 1 1 

0 

- 

1 

- 

1 1 

1 1 

- 

- 

- 

- 

C 

B 

D 

A 

         C0 

                                _  _ 

C0 = A + C + B D + B D  
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C0 = B C' D + C D + B' D' + B C D' + A 
C1 = B' D + C' D' + C D + B' D' 
C2 = B' D + B C' D + C' D' + C D + B C D' 
C3 = B C' D + B' D + B' D' + B C D' 
C4 = B' D' + B C D' 
C5 = B C' D + C' D' + A + B C D' 
C6 = B' C + B C' + B C D' + A 

C0 = A + B D + C + B' D' 
C1 = C' D' + C D + B' 
C2 = B + C' + D 
C3 = B' D' + C D' + B C' D + B' C 
C4 = B' D' + C D' 
C5 = A + C' D' + B D' + B C' 
C6 = A + C D' + B C' + B' C 

C2 

IMPLEMENTATION AS MINIMIZED SOP 

(CONT’D) 

• Can do better 

– 9 unique product terms (instead of 15)  

– Share terms among outputs 

– Each output not necessarily in minimized form 

1    1    X    1 

1    1    X    1  

1    1    X    X 

0    1    X    X  

D 

A 

B 

C 

1    1    X    1 

1    1    X    1  

1    1    X    X 

0    1    X    X  

D 

A 

B 

C 

C2 

24 

BC' 

B'C 

B'D 

BC'D 

C'D' 

CD 

B'D' 

A 

BCD' 

A B C D 

C0  C1  C2  C3  C4  C5  C6  C7 

PLA IMPLEMENTATION 
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CAUSES OF SIGNAL PROPAGATION 

DELAYS 

1. Real gate: in response to a change at the input the 

output changes in a short but finite (nonzero) time.  

The time necessary to reach the new value of the output: 

propagation delay. 

 

2. Interconnections: Finite velocity of propagation of 

electromagnetic waves, delays caused by stray 

capacitances and inductances.   

26 

SIGNAL PROPAGATION DELAY 

Ideal case:   the gates generate the output signals 

simultaneously with the appearance of input signals, and 

no time is necessary for signal propagation through the 

interconnections. 

 

Real case: the gates generate the output signals only with 

time delay, and the propagation velocity through the 

interconnections is finite, resulting in an additional delay. 
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A NOR GATE WITH A LUMPED DELAY 

Lumped element model:  

real gate = ideal gate +”lumped delay element” 

28 

HAZARDS 

The signal propagation delays can cause transitory 

erroneous operation of the logic networks. Such erroneous 

phenomena, occurring governed by chance, are called 

hazards.   

 

The cause of hazards is the timing delay of different 

components in the logic circuit. The resulting glitches in the 

circuit may or may not induce additional problems - other 

than increased issues due to switching noise. 

 

It is good design practice to design circuits to minimize 

these hazards. 
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HAZARDS 
A hazard or glitch in digital logic is a fault in the logic system 

due to a change at the input. A static hazard is when the 

output of a logic circuit momentarily changes when its final 

value is the same as its value before the hazard (when the 

output is "trying" to remain the same, it jumps once, then 

settles down). A dynamic hazard (or oscillation hazard) is 

where a logic circuit will momentarily change back to its 

original value while changing to a new value.  

 

The cause of hazards is the timing delay of different 

components in the circuit. The resulting glitches in the 

circuit may or may not induce additional problems - other 

than increased issues due to switching noise. It is good 

design practice to design circuits to minimize these 

hazards. 
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ANALYSIS OF STATIC HAZARDS 

The change sequence of the input states and variables can 

be followed using the K map. 

     Loops in the K map  

     corresponding to the  

     AND gates. 

A   B   C   D 

0   1   1   0 

0   1   1   1 

1  1   1   1 

1   0   1   1 

1   0   1   0 

Control handover 

between AND gates: 

static hazards 
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HAZARD PHENOMENA 

HAZARD 

The pulse „0” or „1” on the output is caused not by the logic 

conditions. The delays may depend on various and 

unexpected circumstances (e.g. self-heating of the circuit, 

etc.), therefore cannot be always controlled.  

 

HAZARD TYPES 

Static hazard 

 „0”-type hazard 

 „1”-type hazard 

  

Dynamic hazard 

  

Functional hazard (not shown) 

32 

STATIC HAZARDS 

There are two types of static hazards: a low-going glitch (or 

static one hazard) is where the high output transitions to a 

low and back high (1-0-1) and a high-going glitch (or static 

zero hazard) is where the low output transitions to a high and 

back low (0-1-0). 
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STATIC HAZARDS 

 
Static 0 hazards occur in product-of sums implementations, 

but do not occur in sum-of-products implementations. Static 1 

hazards occur in sum-of-products implementations, but do 

not occur in product-of sums implementations. 

 

Adding logic redundancy using a Karnaugh map is the 

easiest way to eliminate static hazards. 

 

Static hazards can be eliminated  using a sum-of-product s 

implementation containing every prime implicant. 
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STATIC HAZARD IN  

COMBINATIONAL CIRCUITS  
                         — 

F(ABC) = AB + AC 

        _   

ABC = 111    ABC = 011 

1 

& 

& 

1 

• 
A 

B 

C 

F 

t1 
t3 

t4 

t6 

If 

 

t1+t3  t4+t6 

 

on the output 

 

1  0  1 

 

change will occur! 
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STATIC HAZARD 

The brief pulse or glitch in the 

output is caused by the  propa-

gation delay difference of the 

signals through the gates. 

Measured  width at 50% level:  

app. 40 nsec, series 74 one 

gate average delay app. 13 

nsec.   

(Student’s measurement.)    

1 cm = 100 nsec 

36 

STATIC HAZARD IN COMBINATIONAL 

CIRCUITS  

1 

1 

1 

1 

B 

A 

C 

                         — 

F(ABC) = AB + AC 

 

critical transition: 

        _   

ABC = 111    ABC = 011 

1 

& 

& 

1 

• 
A 

B 

C 

F 
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ELIMINATION OF STATIC HAZARD (1)  

1 

1 

1 

1 

B 

A 

C 
Elimination of static hazard: it is 

necessary to prevent the influence of 

critical transition, for this the  BC prime 

implicant  should also be covered. 

 
                                 — 

F(ABC) = AB + AC + BC 

 

Critical transition: 

        _ 

ABC = 111    ABC = 011 

38 

ELIMINATION OF STATIC HAZARD (2)  

1 

1 

1 

1 

B 

A 

C 
 
 

& 

& 

1 

• A 

B 

C F 

& 

1 
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SYNTHESIS OF NETWORKS FREE OF 

STATIC HAZARDS 

The two-level AND-OR network is free of static hazard only if 

for any/all pairs of adjacent input combinations generating a 

value of 1 on the output the is an AND gate the output of 

which is 1 for both adjacent input combination.  

 

In other words: for any two adjacent minterms there is at 

least one prime implicant in the circuit covering both 

minterms. 
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STATIC HAZARDS 

1 1 

1 

 1  1 

1 

1 

1 

C 

B 

D 

A 

K maps are useful for 

detecting and eliminating 

race hazards.             

 

           _ 

An additional term BC     

would eliminate the 

potential race hazards, 

bridging between the green 

and blue output state or 

blue and red output states. 
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ELIMINATION OF RACE HAZARDS 

1 1 

1 

 1  1 

1 

1 

1 

C 

B 

D 

A 

                _  

An additional term BC      

eliminates the potential 

race hazards, bridging 

between the green and 

blue  output state or blue 

and red output states. 

 

The term is redundant in 

terms of the logic state of 

the system, but such 

redundant terms are often 

needed to assure race-free 

dynamic performance.   

42 

SYNTHESIS OF NETWORKS FREE OF 

STATIC HAZARDS GUIDELINES 

Guidelines for synthesis: 

 

The  simplest static hazard free disjunctive form (SOP) can 

be obtained by  adding the possible minimum number and 

simplest prime implicants to the simplest disjunctive form 

(SOP) to fulfill the necessary covering conditions. 
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STATIC HAZARD IN PRODUCT-OF-SUM 

NETWORKS 

The above analysis can also be applied to the two-level 

OR-AND networks.. 

 

The only modification is that the maxterms should be 

considered, an in case of necessity the redundant OR gates 

ensuring the covering of adjacent loops should be included 

into the network. 
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EXAMPLE: HAZARD ELIMINATION  

IN TWO-LEVEL NETWORKS 

Construct the static hazard free conceptual AND-OR logic 

diagram of the function given in its simplest SOP form 

                                 _ _ _                   _     _ 

 F(A,B,C,D) = B D + A B C  + A C D + B C D 

 

Discuss the NAND gate based implementation, and as an 

alternative the PLA based implementation too.  

(74LS00 4x2 input, 74LS20 2x4 input, 74LS30 1x8 input 

NAND gates). 
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KARNAUGH MAP: MINIMAL COVER 

1 1 1 

1 

1 

 1   

1 

1 1 

C 

B 

D 

A 

                                 _ _ _                   _     _ 

 F(A,B,C,D) = B D + A B C  + A C D + B C D 

46 

POTENTIAL STATIC HAZARDS 

1 1 1 

1 

1 

 1   

1 

1 1 

C 

B 

D 

A 

                                 _ _ _                   _     _ 

 F(A,B,C,D) = B D + A B C  + A C D + B C D 

Hazards can occur  

for three transitions: 

 

0 0 0 0  0 0 1 0 

 

0 0 0 1  0 1 0 1 

 

1 0 1 0  1 0 1 1 
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ELIMINATION OF HAZARDS 

1 1 1 

1 

1 

 1   

1 

1 1 

C 

B 

D 

A 

                                 _ _ _                    _     _ 

 F(A,B,C,D) = B D + A B C  + A C D + B C D 

Three additional 

loops are necessary 

to eliminate the 

hazards 

48 



2019.09.07. 

25 

49 

QUINE-MCCLUSKEY SUMMARY 

Minimal cover: 4 prime implicants, remaining 3 non-essential 

prime implicants, however they are needed for hazard 

elimination. 

50 

SUMMARY 

                   

                                  _ _ _                    _     _ 

 F(A,B,C,D) = B D + A B C  + A C D + B C D 

 

To eliminate the static hazards in the minimal network 

realized by its four essential prime implicants, it should be 

be complemented by three redundant prime implicants: 

  _  _         _       _ _  _ 

  A C D,  A B C,  A B D 

 

The hazard free network contains one 2-input AND gate, 

six 3-input AND gate and one 7-input OR gate. 
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IMPLEMENTATION WITH NAND GATES 

                      

 

 

 

Implementation with NAND gates: (AND-OR  NAND-

NAND) 

 

Minimal cover: 

 74LS00 (4x2 input)  1/4 

 74LS20 (2x4 input)  1 1/2 

 74LS30 (1x8 input)  1 

 

Hazard free network: 

 74LS00 (4x2 input)  1/4 

 74LS20 (2x4 input)  3 

 74LS30 (1x8 input)  1 
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STATIC HAZARDS IN INCOMPLETELY 

SPECIFIED NETWORKS 

If the logic function to be realized is incompletely specified, 

i.e. it contains don’t care terms, then the method and 

approach of obtaining the simplest static hazard free two-

level logic network is less systematic. 
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HAZARD ELIMINATION ANALYSIS WITH 

DON’TCARE TERMS 

1 

X 

 1   

1 X 

1 

C 

B 

D 

A 

Cover minimization 

followed by hazard 

elimination using redundant 

prime implicant (all prime 

implicants included): 

m(5,7,13,15) + m(10,14) + 

m(14,15) 

 

The prime implicant  

m(14,15) is really 

necessary? 

 

This depends on the 

interpretation of the X 

terms! 
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HAZARD FREE MINIMAL COVER 

1 

X 

 1   

1 X 

1 

C 

B 

D 

A 

m(5,7,13,15) + m(10)  

 

3 gates/8 pins 

 

Previous version: 

 

4 gates/11 pins 

 

Approach: mostly 

heuristic 
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STATIC HAZARDS IN INCOMPETELY 

SPECIFIED NETWORKS 

The construction of minimal hazard free two-level network 

for the incompletely specified logic functions might depend 

on the interpretation of don’t care terms. 

 

If the hazard elimination should be performed for the don’t 

care terms too, then in the assignment of value for the don’t 

care terms is not always and necessarily based on the 

consideration of obtaining the simplest  prime implicants.  

 

In such cases the simplification process might include 

heuristic (trial-and-error) steps too. 
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DYNAMIC HAZARD 

Dynamic hazard occurs, when in the case of the change of a 

single input should result a single change of the output (e.g. 

input: 10, output 0 1) , but instead of it the stationary 

output is reached only with an additional (double) jump (e.g. 

0 1 0 1). 
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DYNAMIC HAZARD 

Dynamic hazards can only occur in three-level networks or 

above, if  on any of the levels a static hazard is present. 

 

Therefore eliminating the possible static hazards on each 

individual level, the dynamic hazard is also eliminated 

automatically.  
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FUNCTIONAL HAZARD  

B C 

A 1 1 1 

1 

0 

0 0 0 

B C 

A 1 1 1 

1 

0 

0 0 0 

B C 

A 1 1 1 

1 

0 

0 0 0 

11 101 111 

It can occur if two or more  input variables change 

simultaneously. 

E.g. for the transition 101110 two different time sequence 

is possible, therefore on the output an unwanted 0 state can 

occur for a short time.  
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ELIMINATION OF FUNCTIONAL 

HAZARDS 

The best method to eliminate the functional hazards to 

disallow the non adjacent input changes. This should be 

made in the unit generating the input combinations.  

 

The other possibility is to use synchronizing  and clock 

signal. 

60 

REVIEW QUESTIONS 

 

 

1. Define the concept of symmetric and partially symmetric Boolean 

functions and give appropriate illustrative examples. 

 

2. Describe the structure and properties of symmetric and partially 

symmetric functions on the Karnaugh map. Discuss their implementation 

using AND-OR-XOR logic. 

 

3. Define and describe the concept, cause, and effects of hazards in a 

combinational circuit. 

 

4. Define and explain the following concepts: static hazard, dynamic 

hazard and functional hazard. 

 

4. Describe and discuss the method of elimination of  static hazards in a 

combinational circuit. 

 

5. Describe  the main steps of the Quine-McCluskey algorithm for finding 

the prime implicants and to establish the minimal cover. 
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PROBLEMS AND EXERCISES 

1. Implement the logic function shown below: 

(a) using a two level minimal system (minimal cover), 

(b) without static hazard. 

  

F(A,B,C,D,E) = 5 (2,6,8,10,12,14,17,19,21,23,26,27,30,31) 

  

(HINT: the minimized SOP form contains five 4-cube (i.e. 3-

variable) loops. Two additional product terms are necessary 

to eliminate the static race hazards.) 

 

Supplementary exercise: Repeat the minimization using the 

Quine-McCluskey algorithm too. 
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PROBLEMS AND EXERCISES 

2. Analyze the combinational circuit shown below.  

 - Is it minimal?  

 - Is it free of static hazard? 

 If not, reengineer the circuit to obtain the minimal hazard-

free form!  

. 
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PROBLEMS AND EXERCISES 

3. Using the Quine-McCluskey method find all prime implicants 

of the function below. Give also the minimal cover. 

   

 F(A, B, C, D) = 4(0, 4, 5, 6, 7, 9, 11, 13, 14) 
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  END OF LECTURE 

 
 

 


