
2019.09.07.

1

1

DIGITAL TECHNICS I

Dr. Bálint Pődör

Óbuda University, Microelectronics and Technology Institute

8. LECTURE: NUMBER SYSTEMS AND CODES II

 1st year BSc course 1st (Autumn) term 2018/2019

2

8. LECTURE

1. BCD type and other special codes

2. Arithmetical operations in BCD type codes

3. Encoders, decoders and code converters

4. Simple code converter circuits

2019.09.07.

2

3

REVISION: REPRESENTING NEGATIVE

NUMBERS IN BINARY SYSTEM

Numbers: magnitude and sign.

Digital systems: storage in registers, for each bit one

elementary storage cell (flip-flop, bistable).

Sign storage: one (additional) elementary cell. Usually the

MSB.

Positive number: sign +, digital system: sign bit 0.

Negative number: sign -, digital system: sign bit1.

4

REPRESENTING NEGATIVE NUMBERS

IN BINARY SYSTEM

Example: representing -5 on 4 bits

 Sign and magnitude

 +5  0 1 0 1 -5  1 1 0 1

 1’s complement

 +5  0 1 0 1 -5  1 0 1 0

 2’s complement

 +5  0 1 0 1 -5  1 0 1 0

 +1

 1 0 1 1

2019.09.07.

3

5

SIGN AND MAGNITUDE (ON 4 BIT)

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7 –0

–1

–2

–3

–4

–5

–6

–7

0 100 4

1 100 -4

Range: -7 …. +7

6

1’S COMPLEMENT (ON 4 BIT)

0 100 4

1 011 -4
0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7 –7

–6

–5

–4

–3

–2

–1

–0

Range: -7 …. +7

2019.09.07.

4

7

2’S COMPLEMENT (4 BIT)

0 100 4

1 100 -4

+0

+1

+2

+3

+4

+5

+6

+7 –8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

Range: -8 …. +7

8

BINARY ENCODING Of DECIMAL DIGITS

Storing and processing information: binary (1s or 2s

complement) system.

Data in- and output: decimal system.

Expressing the individual digits of the decimal system

(symbols 0,1,… 9) with binary codes:

 Binary Coded Decimal (BCD)

2019.09.07.

5

9

TETRAD CODES AND THEIR ALGORITHMS

Weighted (positional value) codes

 - ”normal” (natural) BCD code (NBCD), Aiken code, etc.

Non-weighted codes

 - Stibitz (excess-3) code, Glixon code and other related

 one-step codes, etc.

Tetrad (nibble) code: a4a3a2a1 ai = 0,1

Weights: s4s3s2s1

Value of decimal digit:

 d = a4s4 +a3s3 + a2s3 +a1s1

10

WEIGHTED TETRAD CODES

Important weighted tetrad codes and their weights:

 8 4 2 1 normal or natural BCD code

 5 4 2 1

 2 4 2 1 Aiken code (self-complementing)

 4 2 2 1 Aiken code

 5 3 1 1

 7 4 2 1 code minimizing the number of 1s

 7 4 -2 -1

2019.09.07.

6

11

NORMAL BCD CODE

Natural code

- Uses the binary equivalent of each digit

- Natural positional values: 8 4 2 1

 d = 8a4 + 4a3 + 2a2 +1a0

Six non-used (non-allowed)

combinations:

(1010, ... 1111) pseudo-tetrad.

Valid code words

Not used (invalid)

code words

12

IDENTIFICATION OF INVALID

CODEWORDS ON THE K-TABLE

1 1 1

1

1

1

C

B

D

A

Minimized:

P = A B + A C

Error detection logic:

&

&

1

A

B

A

C

2019.09.07.

7

13

AIKEN CODE
- 4,2,2,1 or 2,4,2,1 positional values

- Several arrangements are possible

- Self-complemeting BCD: 2  0010 and 7  1101

 (9’s or diminished radix complement),

- Arithmetics: instead of subtraction addition of 9’s

 complement +1:

 d = 4a4 + 2a3 + 2a2 +1a0

Tetrade indices: 0,1,2,3,6,9,12,13,14,15

Example: 528 528

 -347 +652

 171 1170  +1 and discard overflow!

14

Self-complementing

codes, e.g.

4 2 2 1

8 4 -2 -1

Excess-3

2019.09.07.

8

15

VARIOUS BCD TYPE CODES

16

WEIGHTED BCD CODES

2019.09.07.

9

17

EXCESS-3 OR STIBITZ CODE

Displaced weighted code

 d = 8a4 + 4a3 + 2a2 +1a0 - 3

- Uses the binary code of ”decimal digit + 3”

- Self-complementing code

- Aritmethics: carry on the 5th bit, the result should be

corrected.

Tetrad indices: 3,4,5,6,7,8,9,10,11,12,

18

NON-WEIGHTED BCD CODES

2019.09.07.

10

19

ARITHMETICAL OPERATIONS IN

TETRAD CODES

Many digital systems (processors, computers) can perform the

arithmetical operations or a part of them directly on BCD

numbers.

E.g. the microprocessors can perform BCD addition, several of

them subtraction too. Certain special processors can perform

BCD multiplication and division too.

The BCD addition is reduced to binary addition. The tetrads of

the operands are added as binary numbers, and if necessary

(illegal codewords or decimal carry is generated during the

addition), a systematic correction is performed.

20

ADDITION IN NORMAL BCD (8421) CODE

If the sum of two tetrads is not larger than 9, the result is

valid, no correction is necessary.

If the sum of two tetrads is larger than 9, (decimal carry and

illegal codeword or pseudo-tetrad is generated) the result is

valid only in binary system and not in BCD. The necessary

correction is to add decimal 6 or i.e. binary 0110 to the actual

tetrad.

The correction should be performed beginning form the least

significant tetrad and going upwards step-by-step.

2019.09.07.

11

21

BCD (8421) ADDITION

Demo example:

 decimal BCD

 427 0100 0010 0111

 + 131 + 0001 0011 0001

 —— ————————

 558 0101 0101 1000

The sums were not larger than 9 at any decimal position no

correction is necessary

22

BCD ADDITION: +6 CORRECTION

 789 0111 1000 1001

 + 213 + 0010 0001 0011

 —— ————————

 1002 1001 1001 1100

 + 0110 +6 corrrection

 ————————

 1001 1010 0010

 + 0110 +6 correction

 ————————

 1010 0000 0010

 + 0110 +6 correction

 ————————

 1 0000 0000 0010

2019.09.07.

12

23

BCD (8421) ADDITION ALGORITHM

ABCD +BCD BBCD = ABCD +bin BBCD

 if ABCD +bin BBCD  9

ABCD +BCD BBCD = ABCD +bin BBCD +bin 6BCD

 if ABCD +bin BBCD  9

24

BCD ADDITION IMPLEMENTATION

B3

B2

B1

B0

A3

A2

A1

A0

S3

S2

S1

S0

Bináris

összeadó

C4

C0

„0”

B3

B2

B1

B0

A3

A2

A1

A0

B3

B2

B1

B0

A3

A2

A1

A0

S3

S2

S1

S0

Bináris

összeadó

C0

& 1

&

„0”

„0”

„0”

S3

S2

S1

S0

C4

Carry between

decades

A + B > 9.

illegal code

Decimal 6

(binary 0 1 1 0)

correction

Binary

adder

Binary

adder

2019.09.07.

13

25

SSI MODULAR LOGIC: 4-BIT BCD ADDER

26

SSI MODULAR LOGIC: 4-BIT BCD ADDER

The 74F583 4-bit coded (BCD) full adder performs the addition

of two decimal numbers (A0–A3, B0–B3). The look-ahead

generates BCD carry terms internally, allowing the 74F583 to

then do BCD addition correctly.

For BCD numbers 0 through 9 at A and B inputs, the BCD sum

forms at the output.

In addition of two BCD numbers totalling a number greater than

9, a valid BCD number and carry will result

2019.09.07.

14

27

4-BIT BCD ADDER LOGIC DIAGRAM

Gate count 75

(incl. inverters)

28

ADDITION IS STIBITZ

(EXCESS-3) BCD CODE

Addition is performed like in binary, and correction is always

necessary.

Rule (algorithm):

If no decimal carry, subtract 3 (0011), if decimal carry add 3

(0011) at each tetrade.

Advantage:

The correction itself does not generate decimal carry.

Thereore the correction procedure can be performed for Ech

tetrade (decimal position) independently and simultaneously.

2019.09.07.

15

29

EXCESS-3 (STIBITZ) CODE: ADDITION

Example:

 decimal Excess-3

 427 0111 0101 1010

 + 131 + 0100 0110 0100

 —— ————————

 558 1011 1011 1110

 -0011 -0011 -0011

 ————————

 1000 1000 1011

 5 5 8

Because there was no decimal carry at any of the tetrades,

-3 correction is necessary!

30

ADDITION IN AIKEN CODE

Addition like in binary, then correction for each tetrade:

- If no illegal codeword, no correction.

- If illegal codeword, and also decimal carry the correction is

+ 6, if no decimal carry the correction is - 6.

2019.09.07.

16

31

SUBTRACTION IN TERTRADE CODES

Like in the binary system the subtraction is reduced to

addition in complementary code.

Both 9s and 10s complement representation can be used, for

the former of course +1 correction should be applied to the

result.

32

 MULTIPLICATIVE OPERATIONS

IN TETRADE CODES

Appropriate algorithms are available tor multiplication and

division in BCD system.

 A common is the division and multiplication by 2 (used e.g.

in binary-to-BCD or BCD-to-binary conversion). Or this, in

order to improve efficiency, there exist separate algorithms.

Binary: shift with one position to right or left.

BCD multiplication with 2: shift one position to left, and +6

correction as appropriate.

2019.09.07.

17

33

ONE-STEP CODES, GRAY CODE

The Gray code is a special case of the one-step codes. It is a

set of 2n n-bit codewords in such a sequence that any two

neighbouring codewords differ only in one bit (place). This

applies also to the first and last codewords (cyclic property).

Applications: measurements and instrumentation,

automatics, position (linear or angle) sensing and encoding,

etc.

34

4-BIT GRAY CODE ON THE

KARNAUGH MAP

Construction rules of Gray code on 4-bits

2019.09.07.

18

35

BIN/GRAY CONVERSION EXAMPLE:

 3-BIT GRAY CODE

Dec Bin Gray

———————————

0 0 0 0 0 0 0

1 0 0 1 0 0 1

2 0 1 0 0 1 1

3 0 1 1 0 1 0

4 1 0 0 1 1 0

5 1 0 1 1 1 1

6 1 1 0 1 0 1

7 1 1 1 1 0 0

———————————

Bin/Gray conversion:

- first bit is the same as the first

bit (MSB) of binary code,

- the second bit is given by XOR

of the 1st and 2nd bit of bunary

code,

- the third bit is given by XOR of

the 2nd and 3rd bit of bunary

code,

- and so on.

36

POSITION CODES

2019.09.07.

19

37

POSITION CODES

38

BINARY/GRAY AND GRAY/BINARY

CONVERSION ALGORITHMS

Binary: b3b2b1b0 Gray: a3a2a1a0

Binary  Gray Gray  Binary

—————————————————————

a3 = b3 b3 = a3

a2 = b3  b2 b2 = a3  a2

a1 = b2  b1 b1 = a3  a2  a1 = b2  a1

a0 = b1  b0 b0 = a3  a2  a1  a0 = etc.

Binary  Gray: ai = bi+1  bi

Gray  Binary: bi = bi+1  ai

2019.09.07.

20

39

BINARY/GRAY CODE CONVERTER

=1

=1

=1

0 b3

1 b2

1 b1

1 b0

0 a3

1 a2

0 a1

0 a0

40

OTHER ONE-STEP CODES

Various similar (one-step) codes are known, also in BCD

versions .

E.g. Glixon-code, tetrad codewords

0000 (0)  0001 (1)  0011 (2)  0010 (3) 

 0110 (4)  0111 (5)  0101  0100 (7) 

 1100 (8)  1000 (9)

2019.09.07.

21

41

BCD-TO-GLIXON CODE CONVERSION

0 1 2 3

7

8

6

9

 5 4

C

B

D

A

Synthesize (normal)

BCD/Glixon code

converter. It can be

supposed that the invalid

codewords never occur on

the inputs..

The Glixon code is a one-

step BCD code.

Codewords from 0 through

9 are 0-tól 9-ig

0000, 0001, 0011, 0010,

0110, 0111, 0101, 0100,

1100, and 1000.

EXAMPLE 5 (EXCLUSIVE-OR LOGIC):

BCD-TO-GLIXON CODE CONVERTER

42

The Glixon code is a one-step BCD code (the Hamming

distance is 1). The code words from 0 to 9 are

0000(0) 0001(1) 0011(2) 0010(3) 0110(4)

0111(5) 0101(6) 0100(7) 1100(8) 1000(9)

Normal BCD code: ABCD (A is the MSB)

Glixon code: E3, E2, E1, E0 (E3 is the MSB).

 E3 = Σ4(8,9)X(10-15)

 E2 = Σ4(4-8)X(10-15)

 E1 = Σ4(2-5)X(10-15)

 E0 = Σ4(1,2,5,6)X(10-15)

2019.09.07.

22

MINIMIZED TWO LEVEL AND-OR CIRCUIT

43

&

&

&

&

&

1

1

1

E3 = A

 _

E2 = B + A D

 _ _

E1 = B C + B C

 _ _ _

E0 = C D + A C D

Pin count 18

Gate count 8

AND-OR-EXCLUSIVE LOGIC

IMPLEMENTATION

44

Using XOR gates in implementing (partially) symmetric

logic functions make possible to obtain more economical

solutions than using standard optimized two-level AND-

OR or OR-AND circuits.

Here this approach can be applied to E1 and E0.

Full or partial symmetry is evident on the Karnaugh map

by noting the chessboard patterns.

2019.09.07.

23

45

AND-OR-XOR LOGIC: E1

1 1

1

X

1

X

X

X

X

X

C

B

D

A

 _ _

E1 = B C + B C

(three gates)

E1 = B  C

One gate instead of

three!

46

AND-OR-XOR LOGIC: E0

1 1

X

1

X

 1

X

X

X

X

C

B

D

A

 _ _ _

E0 = C D + A C D

(three gates)

 _

E0 = A (C  D)

Two gates instead of

three!

2019.09.07.

24

AND-OR-XOR LOGIC IMPLEMENTATION

47

&

=1

=1

1

&

E3 = A

 _

E2 = B + A D

E1 = B  C

 _

E0 = A (C  D)

Pin count 11

Gate count 5

Additional benefit: 2 inverters instead of 4 at the input!

48

OTHER EXAMPLE: GRAY/AIKEN CODE

CONVERSION

It should operate from 0 to 8!

- Setting-up the truth table

- Minimization of logic

- Realization with

NAND/NAND network

Gray code Aiken code

2019.09.07.

25

49

GRAY/AIKEN CODE CONVERTER:

MINIMIZED FUNCTIONS

 _

X = C B + B D

 _ _

Y = B D + C B

 _

Z = A + C D + B C

 _ _ _ _ _ _ _

K = A B C D + B C D + B C D + B C D

50

IMPLEMENTATION (X AND Y)

 _

 X = C B + B D

 _ _

 Y = B D + C B

2019.09.07.

26

51

IMPLEMENTATION (Z)

 _

 Z = A + C D + B C

&

&

&

52

IMPLEMENTATION (K)

 _ _ _ _ _ _ _

 K = A B C D + B C D + BCD + B C D

2019.09.07.

27

53

BINARY-TO-BCD CONVERSION

Correction (+6):

 - generation of invalid code (pseudo-tetrad),

 - stepping through decade boundaries.

Conversion process:

 - binary number to be converted shifted to left

 beginning with the MSB,

 - after each step the conditions for correction are

 examined, and the eventual corrections are

 implemented.

54

BINARY-TO-BCD CONVERSION

ALGORITHM

 * 1 1 1 0 0 1(bin) = 57(dec)

 1 * 1 1 0 0 1 left shift

 1 1 * 1 0 0 1 left shift

 1 1 1 * 0 0 1 left shift

 * 1 1 1 0 * 0 1 left shift

Invalid tetrade +0 1 1 0 * correction

 1 * 0 1 0 0 * 0 1 left shift

 1 0 * 1 0 0 0 * 1 left shift

decade 1 0 1 * 0 0 0 1 * left shift

crosing +0 1 1 0 * correction

 1 0 1 * 0 1 1 1 *

 5 7

2019.09.07.

28

55

BINARY-TO-BCD CONVERSION

After shift correction +6 if any of the two conditions are

fulfilled.

The correction can b performed before the shift by adding +3,

if the decimal value of the tetrad is 5 or larger.

Advantage: in this case because of the correction numbers

larger than 9 never occur, so the correction with respect to

crossing the decade boundary is automatic.

Therefore only one type of correction logic circuit is

necessary.

56

 END OF LECTURE

