
2019.09.07.

1

1

DIGITAL TECHNICS I

Dr. Bálint Pődör

Óbuda University, Microelectronics and Technology Institute

11. LECTURE: FUNCTIONAL BUILDING BLOCKS II

1st year BSc course 1st (Autumn) term 2018/2019

2

FUNCTIONAL BUILDING BLOCKS II

1. Code conversions: binary/Gray, binary/BCD

2. Multiplexers and demultiplexers

3. Comapartors

2019.09.07.

2

3

4-BIT GRAY CODE ON THE

KARNAUGH MAP

Construction rules of Gray code on 4-bits

4

BINARY/GRAY CONVERSION

Binary 1 0 0 1 1 0 0 1

Gray 1 1 0 1 0 1 0 1

Simple algorithm for binary-to-Gray code conversion

2019.09.07.

3

5

BINARY/GRAY CODE COVERTER

XOR

XOR

XOR

0 b3

1 b2

1 b1

1 b0

0 a3

1 a2

0 a1

0 a0

6

BIN/GRAY CONVERSION: G2

1 1

1 1

 1 1

1 1

B1

B2

B0

B3

 __ __

G2 = B3 B2 + B3 B2

 = B3  B2

G3 G2 G1 G0

2019.09.07.

4

7

BINARY/GRAY AND GRAY/BINARY

CONVERSION ALGORITHMS

Binary: b3b2b1b0 Gray: g3g2g1g0

Binary  Gray: gi = bi+1  bi

Gray  Binary: bi = bi+1  gi

8

MULTIPLEXING

A multiplexer (MUX) is a device which selects one of many

inputs to a single output. The selection is done by using an

input address. Hence, a MUX can take many data bits and

put them, one at a time, on a single output data line in a

particular sequence. This is an example of transforming

parallel data to serial data.

A demultiplexer (DEMUX) performs the inverse operation,

taking one input and sending it to one of many possible

outputs. Again the output line is selected using an address.

2019.09.07.

5

9

MULTIPLEXING (CONT.)

A MUX-DEMUX pair can be used to convert data to serial

form for transmission, thus reducing the number of required

transmission lines. The address bits are shared by the MUX

and DEMUX at each end. If n data bits are to be transmitted,

then after multiplexing, the number of separate lines required

is log2 n + 1, compared to n without the conversion to

serial. Hence for large n the saving can be substantial.

Multiplexers consist of two functionally separate components,

a decoder and some switches or gates. The decoder

interprets the input address to select a single data bit.

MULTIPLEXERS AND DEMULTIPLEXERS

A multiplexer or mux is a device that selects one of many

data-lines and ouputs that into a single line.

A demultiplexer or demux is a device that selects one of

many output lines and connects the single input to the

selected output line.

Sometimes the term data selector is used

2019.09.07.

6

11

MULTIPLEXER

It selects one (data)line from several input (data)lines.

2n data inputs, one data output, n control/selector inputs.

S1 S0

Q

Multiplexer

4 - 1
B
C
D

A

12

MULTIPLEXER:

FUNCTIONING AND INTERNAL STRUCTURE

Internal structure:

2019.09.07.

7

13

4-TO-1 LINE MULTIPLEXER

14

4-TO-1 MUX: INTERNAL STRUCTURE

(a)

Y
4-to-1

Multiplexer

Y

B A

B

0
0
1
1

A

0
1
0
1

(b)

(c)

0 1 2 3

2-to-4
Decoder

D
0

D
1

D
2

D
3

Y

D
0

D
1

D
2

D
3

D
0

D
1

D
2

D
3

B A

Y

(d)

D
0

D
1

D
2

D
3

B A

Selection code

2019.09.07.

8

15

MUX IMPLEMENTATIONS

An 8-to-1 multiplexer implemented using:

(a) a 3-to-8 decoder; (b) seven 2-to-1 multiplexers

16

2-TO-1 MUX: DETAILED ANALYSIS

&

&

1

A

S

B

Logic equation:

 _

Y = S B + S A

Hazard! (Critical change

in S, if A=B=1)

Hazard elimination:

 _

Y = S B + S A + A B &

The network without the AB gate, when impemented with four

NAND (74LS00, tpd=9,5 ns) gates in a breadboard fashion

exhibited the hazardous operation.

2019.09.07.

9

17

2-TO-1 MULTIPLEXER

Static hazard seen on the output of the MUX

18

MULTIPLEXER EXTENSION

D7

D6

D5

D4

D3

D2

D1

D0

A2 A1 A0

8/3/1

MX

Y

E

D7

D6

D5

D4

D3

D2

D1

D0

A0

8/3/1

MX

Y

E

D7

D6

D5

D4

D3

D2

D1

D0 A2 A1 A0

8/3/1

MX

Y

E

D7

D6

D5

D4

D3

D2

D1

D0

D15

D14

D13

D12

D11

D10

D 9

D 8

A2 A1

A0

A1

A2

E

Y

A3 A3 A3

2019.09.07.

10

MULTIPLEXER:

CHANNEL NUMBER EXTENSION

Larger multiplexers can be constructed by using smaller multiplexers by

chaining them together. E. g. multiplexer with 16-data inputs from 4-data

input units.

The number of levels can be increased in principle at free will, however

each added level increases the time delay of the whole circuit.

MULTIPLEXER:

CHANNEL WIDTH EXTENSION

Multiplexing four 3-bit wide channels (buses) using three 4-bit

multiplexers.

2019.09.07.

11

21

DEMULTIPLEXER

• One (data)input line to be connected to any of several

outputs

• One (data)input,

2n (data)outputs,

n control/selector inputs.

22

DEMULTIPLEXER

S1 S0

A

Demultiplexer

1 - 4

S1 S0

A
Q1

Q2

Q3

Q0

Q1

Q2

Q3

Q0

=1 =0

1 1 0 0

1

1
1

1

0

0

0

0

2019.09.07.

12

23

1-TO-4 LINE DEMULTIPLEXER

24

COMPARISON OF DECODER AND

DEMULTIPLEXER

2019.09.07.

13

25

MUX AND DEMUX EXTENSION

MULTIPLEXER AS AN UNIVERSAL

COMBINATIONAL CIRCUIT

From the point of view of output(s) the multiplexer can be

considered as a one level combinational circuit.

Its characteristics is the fast response time.

For the selected input the time delay corresponds to the unit

gate delay.

2019.09.07.

14

BASIC GATES WITH MUX

0

 M

1

0

 M

1

0

 M

1

0

B

B

1

1

0

A B A + B
_

A

A A A

Background: expansion theorem

 _

F(A,B) = A F(1,B) + A F(0,B)

Application to F(A,B) = A B

Expanded form:

 _

A B + A 0 = A B QED

28

MULTIPLEXER AS AN UNIVERSAL

COMBINATIONAL NETWORK

Q = Σ3(1,2,3,5,7)

A multiplexer can be used to implement the truth table. It

generates directly the minterms. E.g. using a 8-to-1 MUX any

3-variable function can be realized using one MSI package.

2019.09.07.

15

29

MULTIPLEXER AS AN UNIVERSAL

COMBINATIONAL NETWORK

30

D7

D6

D5

D4

D3

D2

D1

D0

A2 A1 A0

8/3/1

MX

Y

E

IMPLEMENTATION OF LOGIC FUNCTIONS

WITH MUX
B

C

A

0 1 2 3

4 5 6 7

1 1

1 1

„1”

„1”

„0” A B C

)6,5,3,0(),,(3CBAF

F

CBACBACBACBA)C,B,A(F 

Using gates: min three modules/packges

Using multiplexer: one module/package

2019.09.07.

16

MULTIPLEXER BASED IMPELEMTATION

OF XOR FUNCTION

32

Implementing the Majority Function with

an 8-1 Mux

Principle: Use the mux select to pick out the selected minterms

of the function.

2019.09.07.

17

33

MORE EFFICIENCY

However, there is a better technique available for doing the

same. In this, a 2n-to-1 MUX can be used to implement a

Boolean function with n + 1 variables. The procedure is as

follows. Out of n + 1 variables, n are connected to the n

selection lines of the 2n-to-1 multiplexer. The left-over

variable is used with the input lines. Various input lines are

tied to one of the following: ‘0’, ‘1’, the left-over variable and

the complement of the left-over variable. Which line is

given what logic status can be easily determined with the

help of a simple procedure.

34

MORE EFFICIENCY: USING 4-TO-1 MUX

TO IMPLEMENT A 3-VARIABLE FUNCTION

Principle: Use the A and B inputs to select a pair of minterms.

The value applied to the MUX input is

selected from {0, 1, C, C’} to pick the desired behavior of the

minterm pair.

Function to be implemented: F = 4(2,3,5,6)

2019.09.07.

18

Example: Using Multiplexers to

Implement an Adder

Rearrange truth table:

Use Ai, Bi to select MUX output, connect Ci and Ci’ to MUX

data inputs.

Implement with two 4-to-1 multiplexers and one inverter (to

generate Ci’)

Ai Bi Si Ci+1

0 0 Ci 0

 _

0 1 Ci Ci

 _

1 0 Ci Ci

1 0 Ci 1

FULL ADDER: 4/2/1 MUX

IMPLEMENTATION

36

MU

X

MU

MM

0 1 Ci-1 Ci-1

MUX

MUX

Si

Ci

Ai Bi

Ai Bi

2019.09.07.

19

C0 C1 C2 Function Comments
0 0 0 1 always 1
0 0 1 A + B logical OR
0 1 0 (A • B)' logical NAND
0 1 1 A XOR B logical XOR
1 0 0 A XNOR B logical XNOR
1 0 1 A • B logical AND
1 1 0 (A + B)' logical NOR
1 1 1 0 always 0

3 control inputs: C0, C1, C2
2 data inputs: A, B
1 output: F

CASE STUDY: LOGICAL FUNCTIONAL UNIT

• Multi-purpose Function Block

– 3 control inputs to specify operation to perform on

operands

– 2 data inputs for operands

– 1 output of the same bit-width as operands

IMPLEMENTATION WITH LOGIC GATES

C0 C1 C2 A B F
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 0
1 0 1 1 0 0
1 0 1 1 1 1
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 0

F = 5(0-3,5-10,13,14,16,19,23,24)

Minimization on 5 variable

Karnaugh map:

 four 4-cubes

0

1

2

3

5

6

7

8

9

10

13

14

16

19

23

24

2019.09.07.

20

1

0

A
B

A
B

A
B

IMPLEMENTATION WITH MULTIPLEXER

C0 C1 C2 A B F
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 0
1 0 1 1 0 0
1 0 1 1 1 1
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 0

C2 C0 C1

0

1

2

3

4

5

6

7
S2

8:1 MUX

S1 S0

F

choose implementation technology

5-variable K-map to discrete gates

multiplexer implementation

the target operations are pair wise

inverse of each other

COMPARATOR

A digital comparator compares two numbers in binary form

and generates a one or zero at its output depending on

whether they are the same or not.

Comparators can be used in a central processing unit

(CPU) or microcontroller in branching software.

A comparator can be simulated by subtracting the two

values (A, B) in question and checking if the result is zero.

2019.09.07.

21

41

COMAPRATORS

Comparing two numbers three outcomes are possible

 X < Y

 X = Y

 X > Y

Two binary numbers are equal, if all their bits are equal. In

this case the output of the comparator is 1, otherwise is 0.

42

N-BIT COMPARATOR

=

=

=

&

Xo

Yo

X1

Y1

…….

Xn-1

Yn-1

Z (X=Y)

Equivalency (XNOR)

function

 _ _

A  B = A B + A B

2019.09.07.

22

43

MAGNITUDE COMPARATOR (1-BIT)

 X Y Z(X>Y) Z(X=Y) Z(X<Y)

 ———————————————————

 0 0 0 1 0

 0 1 0 0 1

 1 0 1 0 0

 1 1 0 1 0

 _ _ _ _

Z(X>Y) = X Y Z(X=Y) = X Y + X Y Z(X<Y) = X Y

44

1-BIT MAGNITUDE COMPARATOR

1

1
&

&

=




 X

Y

Z(X=Y)

Z(X<Y)

Z(X>Y)



2019.09.07.

23

2-BIT MAGNITUDE COMPARATOR

2-BIT MAGNITUDE COMPARATOR

2019.09.07.

24

2-BIT MAGNITUDE COMPARATOR

A1

B1

A0

B0

f1

f3

f2

COMPARATORS

• Outputs:

– AeqB: A is equal to B

– AgtB: A is greater than B

– AltB: A is less than B

• Operation?

– Bitwise comparison beginning from the most
significant bit (MSB). As the first difference occurs,
the number in which the bit in question is 1, is the
greater.

2019.09.07.

25

4-BIT COMPARATOR

i 0

i 1

i 2

i 3

b 0

a 0

b 1

a 1

b
2

a 2

b 3

a 3

AeqB

AgtB

AltB

4- AND 8-BIT COMPARATORS: MSI

4-bit comparator three relation

outputs (A>B, A=B, A<B) and

three relation inputs for

chaining purposes.

8-bit comparator with one

relation (A=B) output, and one

relation input for chaining

purposes.

2019.09.07.

26

CHAIN CONNECTED COMPARATORS

The relation inputs of the first comparator (LSB) should be

set for equality.

The delay times of the chained units will be added.

52

 THE END

