DIGITAL TECHNICS
Dr. Balint P8dér

Obuda University,
Microelectronics and Technology Institute

1. LECTURE:
COMBINATONAL CIRCUITS BASIC CONCEPTS

1st (Autumn) term 2018/2019 '

1. LECTURE: COMBINATONAL CIRCUITS
BASIC CONCEPTS

1. General introduction to the course
2. Combinational circuits: basic concepts

3. Boolean algebra and logic functions: a review

AIMS AND SCOPE OF THE COURSE

This course will give an overview of the basic concepts and
applications of digital technics, from Boolean algebra to
Mmicroprocessors.

The lectures will cover more advanced materials and subjects
than those contained the introductory three semester course
of the B.Sc. programme. It will focus more on the general
concepts of the subject and less on the practical details.

In this respect it is supposed that the students have already a
good foundation and a certain level of hands-on experience in
digital technics and electronics.

TOPICS IN FOCUS

Basic concepts of digital technics

Programmable Logic Devices (PLDs) and Field
Programmable Gate Arrays (FGPAS)

Digital (combinational) design and synthesis
Synchronous sequential circuits analysis and synthesis
Arithmetic circuits, adders and multipliers

MOS, CMOS and VLSI digital circuits.

D/A and A/D converters. 4

COMBINATIONAL CIRCUITS:

AN INTRODUCTION

WITH EXAMPLES

DIGITAL NETWORKS: CLASSIFICATION

Digital/logic circuits/networks can be classified into two
groups:

1. Combinational logic networks

Results of an operation depend only on the present inputs to
the operation

Uses: perform arithmetic, control data movement, compare
values for decision making

2. Sequential logic networks

Results depend on both the inputs to the operation and the
result of the previous operation

Uses: counter, controllers, etc.

COMBINATIONAL CIRCUITS:
GENERALIZED MODEL AND PROPERTIES

A —» — Y,

B — Combinational —— Y,
: circuit :

N —— — Ym

Y,=F,(A,B,..N) i=1,2, ..M

Black-box model of combinational circuits.

eThe combinational circuit maps an input (signal) combination
to an output (signal) combination.

¢ A combinational circuit is a circuit with no "memory”.

e The same input combination always implies the very same
output combination (except transients).

e The reverse is not true. For a given output combination
different input combinations can belong.

COMBINATIONAL CIRCUITS:
GENERALIZED MODEL AND PROPERTIES

The independent variables of a Boole
function sometimes denoted by the
capital letters of an English ABC.

The Latin word for letter is Literal, for

a logic expression of ,,n” variables
frequently called an expression of ,n
literals”.

In the followings we apply that name
too.

COMBINATIONAL CIRCUITS:
GENERALIZED MODEL AND PROPERTIES

The aforementioned ,sequences” of logic
variables are not sequences of time (in case of
Combinational Circuits)

At the input they can be considered as a binary
combination of given values of n literals

Similarly at the output they can be considered as
a binary combination of values of m literals. (m
generally does not equal to n.)

(Sometimes vertexes of n or m binary components
respectively.)

Hep (010011 0

COMBINATIONAL CIRCUITS:
GENERALIZED MODEL AND PROPERTIES

The Combinational Circuit is mapping
an input (signal) combination te an
output (signal) combination._This is why
it's called Combinational Circuit. (CC)

The very same input combination

always implies the very same output
combination (when the circuit is in its
stationary state).

E.G. In case a ROM the device answers the

very same output when the given particular
input address is applied.

10

COMBINATIONAL CIRCUITS:
THE MAPPING FUNCTION

The set of input Y The set of utput
states ' states

The mapping
function

Iff both the input variables(X), and the
output variables (©) must get their actual
values from the set {0, 1} then they are

Boolean variables (literals) and

The mapping function £ is a Boolean
function, that is a logic function.

STATIC MODEL OF COMBINATIONAL
CIRCUITS

The so called static model (1)

TRANSIENT STATE

A static model represents the state sequence of a circuit,
i.e. its event history and never describes its transients.

The time as variable never occurs in the functions of the
states of the circuit.

For that it's not necessary applying differential equations
as in case of analogous circuits. 1

STATIC MODEL OF COMBINATIONAL
CIRCUITS

All the operating models of logic automata are static
models. (That’s valid for systems modeling as well.)

For that there are no time dependent logic functions
(that is for that static models).

The conception of such static models are favorites of
systems modeling as well.

13

EXAMPLE: 1-BIT FULL ADDER

+ Its function is to add two bits and the carry from the
previous position, and to generate the sum and the carry

S =S(A.B,C;) Cou = C(AB,C;y)
A — — S

B Full adder

Cin —_ — Cout

The full adder as a combinational logic circuit will be used
throughout in these lectures as vehicle to demonstrate and
explain various concepts in digital logic 14

EXAMPLE: 1-BIT FULL ADDER

T

Positional
adder
Ai + Bi

Carry
developer
G

]

15

FULL ADDER

The task has been divided into two part-tasks:
Adder block of the bits of i-th positions
and

Carry (Ci) producing block for the i-th position.

Note

Both blocks are driven by the same bus

Both blocks have single output each

It's obvious that applying such Full Adders an
optional number of parallel bits can be added.

16

FULL ADDER: BOOLEAN FUNCTIONS

Sum L _ L
S;=ABCiy +ABCi; +ABCi, + ABCi,y

Carry _ _ _
C =ABC +ABC. +ABCi, +ABC,

=AB; +AC; +BC;=AB; + (A + B)C;

=AB; + (A;®B)C;,

The sum can be expressed as a three-variable exclusive OR

function (S; = A@B;®C).

The carry is the three-variable majority function and can also

be expressed in various other algebraic forms.

17

FULL ADDER: GENERAL RELEVANCE

The full adder is the fundamental building block in many
arithmetic circuits, such as adders and multipliers.

Since these circuits strongly affect the overall performance

in current digital ICs, their speed optimization is crucial in
high performance applications, and typical applications

require a tradeoff between power consumption and speed.

In addition, as arithmetic circuits significantly contribute to

the overall power budget, their power consumption
reduction becomes the main objective to pursue in low-
power ICs used in portable electronic equipment.

18

LOGIC OR BOOLEAN ALGEBRA

A SHORT OVERVIEW

OR BOOLEAN ALGEBRA IN A NUTSHELL

19

BOOLEAN ALGEBRA

Logic circuits are the basis for modern digital computer and
other digital systems. To appreciate how digital systems
operate one needs to understand digital logic and Boolean
algebra.

Boolean logic forms the basis for computation in modern
binary computer systems. One can represent any algorithm,
or any electronic computer circuit, using a system of
Boolean equations.

20

10

BOOLEAN ALGEBRA: ITS ROOTS

The Boolean algebra is a brand of mathematics that was
first developed systematically, because of its applications
to logic, by the English mathematician George Boole,
around 1850.

A modern engineering application is to switching, digital
and computer circuit design.

Contributions by Augustus De Morgan (contemporary of
Boole) and by Claude Shannon (1930’ies and 1940’ies)
are also important.

21

BOOLEAN ALGEBRA AND DIGITAL CIRCUITS

The connection between Boolean algebra and switching
circuits has been established by Claude Shannon in the
1930’s.

Boolean algebra is the main analytical tool for the analysis
and synthesis of logic circuits and networks.

Boolean logic: Rules for handling Boolean constants and
variables that can take on 2 values

—Truel/false; on/off; closed/open; yes/no; 1/0; high/low
(voltage)
—Three fundamental operations: AND, OR and NOT

22

11

BOOLEAN ALGEBRA: RELEVANCE

In the 1930s, while studying switching circuits, Claude
Shannon observed that one could also apply the rules of
Boole's algebra in this setting, and he introduced switching
algebra as a way to analyze and design circuits by algebraic
means in terms of logic gate.

Shannon already had at his disposal the abstract
mathematical apparatus, thus he cast his switching algebra
as the two-element Boolean algebra.

In circuit engineering settings today, there is little need to
consider other Boolean algebras, thus "switching algebra"
and "Boolean algebra" are often used interchangeably.

BOOLEAN ALGEBRA: RELEVANCE

Efficient implementation of Boolean functions is a

fundamental problem in the design of combinational circuits.

Modern electronic design automation tools for VLSI circuits
often relay on an efficient representation of Boolean
functions like (reduced ordered) binary decision diagrams
(BDD) for logic synthesis and formal verification.

12

Connection Between
Boolean Calculus and Physical Circuits
Shannon 1938

Shannon
1916-2001

A Symbolic Analysis of Relay
and Switching Circuits®

Claude E. Shannon™*

Shannon's advisor both MSc and PhD - a mathematician

Transactions American Institute of Electrical Engineers, vol. 57, 1938 _#Paper number 38-80, recommended by the

resented at the AIEE summer convention,
1, 1938; made available for preprinting May 27,

AIEE committees on communication and basic sciences and
Washington, D.C., June 20-24, 1938. Manuscript submitted M

1938.)
* Claude E. Shannon is a research assistant in the deparyffent of electrical engineering at Massach: retts Institute of

Technology, Cambridge. This paper is an abstract gf a thesis presented at MI for the degree of master of science.
The author is indebted to Doctor F. L. Hitchcocl Doctor Vannevar Bush, and Doctor S. H. Caldwell, all of MIT,

for helpful encouragement and criticism.

BOOLEAN OPERATORS

« AND
— Result TRUE if and only 0O 0O
if both input operands are true o 1] o0
—-C=Ae®B 1 0|0
1 1|1
« OR
— Result TRUE if any input operands
are true
-C=A+B

Lr|lrRr|Oo|O
Lr|lo|lr|o
RlRr|R|O

26

13

CMOS IMPLEMENTATION: AND, OR

g

5 4T
:{ J?E

AND gate OR gate

C=AB C=A+B

27

BOOLEAN OPERATORS

« NOT

— Result TRUE if single input value is
FALSE

-C=A

Implementation
A

> |

28

14

BOOLEAN OPERATORS: EXCLUSIVE-OR

 EXCLUSIVE-OR

— Result TRUE if either A or B is
TRUE but not both

0 01O

—-C=A9B 0 11
— Can be derived from OR, AND and NOT 1 ol1
A ®B=(A+B) (A ®B) T 110

A xor B equals A or Bﬁjt not both A anEB
« A®B=(A®B)+ (BOA)
A xor B = either A and not B or B and not A
The XOR is not a fundamental Boolean operator, it can
rather be considered as one of the (simplest) Boolean
functions.

Logic circuit families usually offer XOR ,gates” too. 29

CMOS IMPLEMENTATION: XOR

j/—dd

L]
ll“j
%<

N

A®B

B% B—

L

L]
i

Note AGB=A®B=AB+AB ()

15

NOTATIONS:
ENGINEERING VERSUS MATHEMATICS

In electrical engineering and digital electronics the dot (e),
the plus sign (+), and the overline (bar) are used for the
logic operations of AND, OR and NOT respectively.

In mathematics, more specifically in mathematical logic
(Boolean) algebra the respective notations are

A (conjunction),

v (disjunction), and
— (negation).

31

AND, OR, NOT, NAND, NOR

All'logic functions and circuits can be described in terms of the
three fundamental elements.

While the NOT, AND, OR functions have been designed as
individual circuits in many circuit families, by far the most
common functions realized as individual circuits are the NAND
and NOR circuits. A NAND can be described as equivalent to
an AND element driving a NOT element. Similarly, a NOR is
equivalent to an OR element driving a NOT element.

The reason for this strong bias favouring inverting outputs is
that the transistor, and the vacuum tube which preceded it, are
by nature inverters or NOT-type devices when used as signal
amplifiers. Electric and electronic switches (gates) do not
readily perform the OR and AND logic operations, but most
commercially available gates do perform the combined
operations AND-NOT (NAND) and OR-NOT (NOR). -

16

BOOLEAN POSTULATES

1. Boolean algebra is defined on a set of two-valued
elements
2. Each element of the set has its complementary also

belonging to the set

3. Logic operations: conjunction (logic AND) and
disjunction (logic OR)

4. Logic operations are commutative, associative, and
distributive
5. Special elements of the set are the unity (its value is

always 1) and the zero (its value is always 0)
33

MANIPULATE EXPRESSIONS
BOOLEAN MINIMIZATION

Need a way to manipulate expressions.
Rules of ‘adding’, ‘multiplying’ plus associative, distributive laws
etc. The rules are very similar to basic algebra.

One can transform one Boolean expression into an equivalent
expression by applying the postulates the theorems of Boolean
algebra. This is important if one wants to convert a given
expression to a canonical form (a standardized form) or if one
wants to minimize the number of literals (asserted or negated
variables) or terms in an expression. Minimizing terms and
expressions can be important because electrical circuits often
consist of individual components that implement each term or
literal for a given expression. Minimizing the expression allows
the designer to use fewer electrical components and, therefore,
can reduce the cost of the system.

17

BOOLEAN THEOREMS

commutative law
A B=B-°A
A+B=B+A

associative law
A (B+C)=(A*B)sC=A*B-C
A+(B+C)=(A+B)+C=A+B+C

distributive law
A (B+C)=A*B+A-C
A+(B-+*C)=(A+B)*(A+C)

The theorems above appear in pairs. Each pair form a dual.
35

DE MORGAN’S THEOREM

De Morgan’s theorem occupies an important place in the logic
(Boolean) algebra

In logic, De Morgan’s laws (or theorem) are rules in formal
logic relating pairs of dual logic operators in a systematic
manner expressed in terms of negation. De Morgan’s
theorem may be applied to the negation of a disjunction or to
the negation of a conjunction in all part of a formula.

36

18

DE MORGAN’S THEOREM

Negation of a disjunction

A+B=A+B

Since two things are false, it's also false that either of them is
true.

Negation of conjunction

A*B=A+B

Since it is false that two things together are true, at last one of

them should be false. -

DE MORGAN’S THEOREM ON THE K-MAP

A+B=A+B
A-B=A+B
Ao 1 N o g ABO/V1 NE R
0 o?%% :>o /5//4_0% o % 57
1 s 17 1 1 1/
AB NG
Z 7) ¥ 7
T . 2
F- / : +/B/
e

Representation of De Morgan’s theorem on the Karnaugh
map or Veitch diagram. 38

19

DE MORGAN’S THEOREM

De Morgan’s formulation of his theorem influenced the
algebraization of logic undertaken by Boole, which cemented
De Morgan’s claim to the find, although a similar observation
was made by Aristotle and was known to Greek and Medieval
logicians, e.g. to William Ockham (1325), the great medieval
scholastic philosopher.

In electrical engineering context the negation operator can be
written as an overline (bar) above the terms to be negated.

In the originate the mnemonic

"break the line, change the operation”
39

BOOLEAN THEOREMS: DUALITY

The theorems above appear in pairs. Each pair form a dual.
An important principle in the Boolean algebra system is that of
duality. Any valid expression you can create using the
postulates and theorems of Boolean algebra remains

valid if you interchange the operators and constants appearing
in the expression. Specifically, if one exchanges the « (AND)
and + (OR) operators and swaps the 0 and 1 values in an
expression, one will wind up with an expression that obeys all
the rules of Boolean algebra. This does not mean the dual
expression computes the same values, it only means that both
expressions are legal in the Boolean algebra system.
Therefore, this is an easy way to generate a second theorem
for any fact one proves in the Boolean algebra system.

40

20

GENERALIZATIONS OF DE MORGAN’S
THEOREMS

The De Morgan’s theorem is an important tool in the
analysis and synthesis of digital and logic circuits. Its
generalization to several variables is stated below

41

SHANNON’S GENERALIZATION OF
DE MORGAN’S THEOREMS

The De Morgan-Shannon’s theorem refers to the logic or
Boolean functions constructed using logic multiplications
and additions

f(A,B, C, ..., +,) =f(A,B, C, ..., », +)

The negation of the function can be performed by
negating each variable and replacing all logic
summations (ORs) with logic multiplications (ANDs) and
replacing all logic multiplications (ANDs) with logic
summations (ORS).

42

21

SHANNON'’S EXPANSION THEOREMS

F(Xy, Xpy...X.) = Xq F(1,Xy,...X) + X; F(O,Xs,...X,)

F(Xy, Xp,... X0) = [Xg + F(0,Xy, ... X)] [Xq + F(1,X,,...X)]

Application: decomposition of logic functions to smaller
blocks, or for implementation using MUX based logic cells.
Example:

F(A4,B.C.)=AF, +AF,,

Fa=1

Fazo

BOOLEAN FUNCTIONS

The one- and two-variable operations of Boolean algebra can
be considered as functions of one and two variables,
respectively.

In the case of generalized functions the number of variables is
extended only.

n-variable Boolean or logic function

The particular truth value of Z is defined by the f function.

44

22

WHAT IS A BOOLEAN FUNCTION?

Tihe two-variable-operations of'a Boolean
algebra can be considered as functions of
two variables.

In case of generalised functions the
number: of variables is extendedi only.

AEZ =if (X Xo 20X 515 0)

Boolean function of n-variables the values
of

= X; € {0,1} and the function fdefines the
particular truth value of
s Z{0,1}.

How many different logic
function of n variables do exist?
The operations of two arguments are

as many as

27 =16

In case of n variables
n=3 — 256

22" n=4 — 67 840
n=5 — 602 265 600

If the number of variables is increasing, the number of
ddifferent logic functions is growing very fast.

23

CLASSIFICATION OF BOOLEAN
FUNCTIONS OF TWO VARIABLES

Name of the function f(A,B)
Logical constants 0,1
Functions of one variable A, X B, B

AND, OR, NAND, NOR
XOR (A®B), XNOR (A®B)
INHIBITION

IMPLICATION

AB. A+B, AB, A+B

AB+AB, AB+AB
A>B,BoA

A—>B,B—>A

47

BOOLEAN FUNCTIONS OF TWO VARIABLE

7Y Py ey

A B 1:0 f1 f2 f3 f4 f5 fG 1:7 fS f9 f10 fll f12 f13 f14 f15
00 O 0 0 0 0 0 0|0 1 1 1 1 1 1 il 1
01 00 0O 0 1)1 111 0o|0|]0| 0 1 1 1 1
10 0 0 1 1 0 0 1 il 0|0 1 110 0 1 1
11 9 1 0 T 0 1 0 il 0 1 0 110 1{({0}1
L 4 2 @D TV T

0 A B A 1

B ornNorR B A
AND L J NAND
One variable

Boolean constants

48

24

THE 16 POSSIBLE BOLEAN FUNCTINS
OF TWO VARIABLES

Function # Description

0 Zero or Clear. Always returns zero regardless of A and B input
values.

1 Logical NOR (NOT (A OR B)) = (A+B)’

2 Inhibition = BA’ (B, not A). Also equivalent to B>A or A <B.

3 NOT A. Ignores B and returns A",

4 Inhibition = AB’ (A, not B). Also equivalent to A>B or B<A.

5 NOT B. Returns B" and ignores A

[§} Exclusive-or (XOR) = A @ B. Also equivalent to A#B.

7 Logical NAND (NOT (A AND B)) = (A* B)’

8 Logical AND = As B. Returns A AND B.

9 Equivalence = (A = B). Also known as exclusive-NOR (not
exclusive-or).

10 Copy B. Retuirns the value of B and ignores A’s value.

11 Implication, B implies A = A + B". (if B then A). Also equiva-
lentto B == A.

12 Copy A. Returns the value of A and ignores B's value.

13 Implication, A implies B=B + A’ (if A then B). Also equivalent
to A >=B.

14 Logical OR = A+B. Returns A OR B.

15 One or Set. Always returns one regardless of A and B input 49
values.

BOOLEAN FUNCTIOS AND OPERATIONS
OF TWO VARIABLES: A SUMMARY

From the 16 possible two-variable Boolean functions

6 can be considered as trivial
(2 of them are constants, 4 of them are in fact
one-variable functions)

From the 10 non-trivial functions
2 (AND and OR) and their complementary
(AND-NOT and OR-NOT)
as well as the EXCLUSIVE-OR (antivalency)
and the EXCLUSIVE-NOR (equivalency)
are of significance for the practice.

50

25

IC IMPLEMENTATION: E.G. 74HC/HCT181

Total 16 arithmetic operations (add, subtract, plus, shift, plus 12 others)
* Total 16 logic operations (XOR, AND, NAND, NOR, OR, plus 11 others)
» Capable of active-high and active-low operation

FUNCTION TABLES 4-pit amnmetic 1ogic unit 7aHCHCT181
JODE SELECT | ACTIVE HIGH INPUTS AND MODESELECT | ACTIVE LOW INPUTS AND
INPUTS ouTRUTS INPUTS ouTRUTS . -

| = | o, | OGS | ARMHNETICZ | | ¢ | |'g | | LOGIC | ARTHMETIC? ;"D—D
SO) | (MeL; CeeH) t IO) | eeLiceaL - | f=— .
Llel(elLfa A L[L[L]E [Amnst [%D‘-l —1
L{L|L[H[A3B [A+B LiL|L|H|& AB minus 1 . HH T

A 8 L 5 I JHE > e
LiL[#|L[|48 UL H|L[R+B [ABminst is {‘—7'} | ‘*—Lj? ’
L|L|H|[H |ogcal [minust L|L|H[H [lgicall |minusi [S - Hile— | _

E 5 B B = i T
L{H|L[L[AE |ApusAB _ LIH|L[L|A¥B |AplusA+B) = [
L|H HE A+ B) plus AB LIH|L[H[B__|\8pus(A+B) o b T r H_Jj
L{H|H[L[A2B [AminusBmnus1 L{H[H[L[KEB |Amnus8minst HHCr ! HO
L H|H[H|AB AB minus 1 LUH|H[H[a+B [a+B P g—::> i HO
HiL|L|L|K+B |AplshB HiL|L|L|m8 Aplus (4 +8) | . s> —
H L|H|A@B |Apust HlL|L|H[aee |apusB l | [ZE.'—E i
H HiL|s 4+B) pus AB LiH[L[e ABplus (A +8) gl I FOT A
H H|H |8 AB minus 1 L H|H[asB [a+B FHED] “
HH|L|L |ogealt |Apusal | L[L [logcald [ApusAl R 1 L |
H|H|L|H[A+B [A+B)push H|L|H|[AB AB plus A == — I ’%?)]:DJ
H{H|[H|[L|[A+B A+E)pusA HIH|H|L|AB AB plus A & |y T L.
H H[H|[H[A Aminus 1 HIH|H|H[A A = 1. |
Notes to the function tables Notes to the function tables ':g_'p'i— > o
1, Each it shited to e next more signécantposiion. 1. Each biis shified tothe next mare significant positon o — | .
2. Arithmetic operations expressed in 2s complement 2. Anthmetic operations expressed in 25 complement

notation. notation.

WAYS TO DEFINE LOGIC FUNCTIONS

How to define a logic function?
There are several possible ways to do it.

Truth table or its special forms, like
- characteristic number
- canonical (algebraic) forms

(These are unique definitions — with some conditions)
Developed in 1854 by George Boole
Further developed by Claude Shannon (Bell Labs)
Outputs are computed for all possible input

combinations

Graphic representation with Karnaugh map

(This one is unique too)

So called algebraic form, which is not unique.

Some appropriate function-definition language, like VHDL

26

DEFINITION OF A LOGIC FUNCTIONS
BY ITS 1 VALUES

List the indices of those variable combinations to which a 1
value of the function belongs to.

This kind of definition also needs the agreement on the
weights of the variables.

This definition is known as (extended) SOP (sum-of-products)

or disjunctive canonical form.

This definition is also unique similarly to the characteristic
number.

53

The concept of minterm and its
algebraic form

Tihe minterm is a special ,n” variable 104gi¢
function, whose characteristic number
contains a single 1 only.

The Hamming weight of a minterm’s
characteristic number is always 1

It is an/ 0™ Jiteral” logic product, in which
= all of the ,n” variables occur

= either in ponated or in negated form.

27

THE DISJUNTIVE CANONICAL FORM

The minterms of all n variable functions are
n literal (elementary) products.

Any f (logic) function of n variables can be
defined by a sum of n varable minterms

(SOP)

Thisiis unambiguous only. iff the weighig of:
the independent variables is given.
Since logic summarising is disjunction, for

this form is known as Disjunctive Canonical
Form of logic function £ (Unique.)
Also known as SOP.

55

EXAMPLE: SOP FORM OF THE MAJORITY
GATE

» The (extended) SOP form for the 3-input majority gate is:
* M=m3+m5+m6+m7 = X3(3,5,6,7)

» Each of the 2" terms are called minterms, running from 0 to

2n-1

* Note the relationship between minterm number and Boolean

value. A B ¢
|y
Two-level AND-OR
implementation: T ==
ABC
CMOS (SSI) I 1
|mplementat|c.)n:'4062 ® e
logic dual majority gate — asc
/J

56

28

THE CONJUNCTIVE CANONICAL FORM
(EXTENDED) PRODUCT-OF-SUMS

There exist an other canonical form, the conjunctive
canonical form, or the (extended) product-of-sums (POS)
form.

This is also unique.

The two canonical forms are equivalent and can be
transformed into each other using the De Morgan theorem.

57

CONVERSION OF CANONICAL FORMS

Demo: SOP to POS conversion

F(ABC) = £3(2,3,4,6)

1st step: obtain the minterm indices of the negated function
(O-s in the truth table)

F(ABC) = £3(0,1,5,7)

2nd step: to obtain the maxterm indices complement the
minterm indices of the negated function

F(ABC) = I13(0,2,6,7)

58

29

DEFINITION OF A LOGIC FUNCTION
BY ITS MINTERMS

Example: 1-bit full adder

4) (2) (1 _

_ 4 @ @) Si — (1,2’4’7)
A B C, S C
©o 000 0O C,=(3,5,6,7)
1 0O 01 1 0
2 0 1 1 O
s 0 1 1 1 Ss=mg2+m3B3+mS2+m;2=
4 1 00 1 0 — 23(1’2’4’7)
5 1 01 0 1
6 1 1 0 0 1
7 1 1 1 1 1 - —

59

DEFINITION OF THE FUNCTION BY
CHARACTERISTIC NUMBER

Defining a logic function by its characteristic
number is unanimous only if the weights of
the independent variables are fixed
beforehand.

60

30

THE DISJUNCTIVE CANONICAL FORM
(EXPANDED) SUM-OF-PRODUCTS

The minterms of all n-variable functions are n-literal products

Any logic function of n-variables can be defines by a sum of
n-variable minterms (sum of products, SOP)

This is unambiguous only if the weighing of the independent
variables is given.

Since logic summing is disjunction, this form is also known as
disjunctive canonical form of a logic function.

The corresponding SOP is termed as expanded sum-of-
products form 61

EXAMPLE:
THE TWO CANONICAL FORMS OF XOR

The (trivial) extended SOP form (disjunctive canonical form) of
the XOR function (F(A,B)=A® B is

F=AB+AB=122(12)

The extended POS form (conjunctive canonical form) of the
same function is

F=(A+B)(A+B)=N2(0,3)

62

31

CANONICAL FORMS, MINTERMS, AND
PRIME IMPLICANTS

The "standard sum-of-products form” is also known as the
"minterm canonical form” or canonic sum function”. It is a
"sum” (OR) of minterms.

A minterm is also known as the "standard product” or
”"canonic product term”. This is a term where each variable is
used once and once only.

A’”prime implicant” is an implicant of a function which does

not imply any other implicant of the function.

63

PRIME IMPLICANTS: CLASSIFICATION

. Essential prime implicants

. Non-essential prime implicants

. Classification is conditional

64

32

PRIME IMPLICANTS TABLE
b

1 3 6 7 8 9 12 | 13 | 14 | 15
6,7,14,15 X X X
8,9,12,13 X X X X
12,13,14,15 X X X X
1,3 X X
19 X X
3,7 X X “

REVISION QUESTIONS

1. Describe and discuss the fundamental properties of
combinational logic circuits.

2. State and interpret DeMorgan’s theorem.

3. State and interpret Shannon’s extension of DeMorgan’s

theorem.

4. Interpret and explain the following concepts:
(standard/extended) sum-of-product form, also known as
(minterm/disjunctive) canonical form
(standard/extended) product-of-sum form, also known as
(maxterm/conjunctive) canonical form.

Prime imnplicants: essential and non-essential

33

REVISION QUESTIOS

4. What is the function of a (1-bit) full adder? Write down
the truth table showing all the possible input and output
conditions.

Show that the sum (S) function of the one-bit full adder can
be expressed in terms of the three inputs (A, B, and C;,)
and of the carry out (C,,,) as

S= (A +B +Cin)Cout +AB Cin

What is the function of a (1-bit) half adder? How is it
different from a full adder?

67

PROBLEMS AND EXERCISES

1. Find the canonic algebraic forms of the logic function
F(AB,C)=AB+AC

2. List the minterm and maxterm indices of the logic function below

FABC)=ABC+ABC+ABC+ABC

68

34

PROBLEMS AND EXERCISES

3. Draw the diagram of the implementation of the 1-bit full
adder using

3.1. Homogenous NOR circuit.
3.2. 4-to-1 multiplexers and additional simple gates as

necessary.
3.3. Transistor level diagram in CMOS architecture (28

transistors).

69

PROBLEMS AND EXERCISES

4. Determine the function F(A,B,X,Y) in algebraic form,
realized by the following network.

9 b
wh
—
%
>

Decoder

),
I
(‘-\
9
I
\
—C
T]

X Y

70

35

THE END

71

36

