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1. LECTURE: COMBINATONAL CIRCUITS 

BASIC CONCEPTS 

1. General introduction to the course 

 

2. Combinational circuits: basic concepts 

 

3. Boolean algebra and logic functions: a review 
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AIMS AND SCOPE OF THE COURSE 

This course will give an overview of the basic concepts and 

applications of digital technics, from Boolean algebra to 

microprocessors.  

 

The lectures will cover more advanced materials and subjects 

than those contained the introductory three semester course 

of the B.Sc. programme. It will focus more on the general 

concepts of the subject and less on the practical details.  

 

In this respect it is supposed that the students have already a 

good foundation and a certain level of hands-on experience in 

digital technics and electronics.  
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TOPICS IN FOCUS 

Basic concepts of digital technics 

 

Programmable Logic Devices (PLDs) and Field 

 Programmable Gate Arrays (FGPAs) 

 

Digital (combinational) design and synthesis 

 

Synchronous sequential circuits analysis and synthesis 

 

Arithmetic circuits, adders and multipliers 

 

MOS, CMOS and VLSI digital circuits. 

 

D/A and A/D converters. 
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COMBINATIONAL CIRCUITS:  

 

AN INTRODUCTION 

 

WITH EXAMPLES 

DIGITAL NETWORKS: CLASSIFICATION 

Digital/logic circuits/networks can be classified into two 

groups: 

 

1. Combinational logic networks 

Results of an operation depend only on the present inputs to 

the operation 

Uses: perform arithmetic, control data movement, compare 

values for decision making 

 

2. Sequential logic networks 

Results depend on both the inputs to the operation and the 

result of the previous operation 

Uses:  counter, controllers, etc. 



4 

7 

COMBINATIONAL CIRCUITS: 

GENERALIZED MODEL AND PROPERTIES 

The combinational circuit maps an input (signal) combination 

 to an output (signal) combination. 

 A combinational circuit is a circuit with no ”memory”. 

 The same input combination always implies the very same 

 output combination (except  transients). 

 The reverse is not true. For a given output combination  

 different input combinations can belong. 

Combinational 

circuit 

Yi = Fi (A, B, ..., N) i = 1, 2, ... M 

Black-box model of combinational circuits.  

COMBINATIONAL CIRCUITS: 

GENERALIZED MODEL AND PROPERTIES 

8 
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COMBINATIONAL CIRCUITS: 

GENERALIZED MODEL AND PROPERTIES 
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COMBINATIONAL CIRCUITS: 

GENERALIZED MODEL AND PROPERTIES 

10 
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COMBINATIONAL CIRCUITS:  

THE MAPPING FUNCTION 

11 

STATIC MODEL OF COMBINATIONAL 

CIRCUITS 

12 

A static model represents the state sequence of a circuit, 

i.e. its event history and never describes its transients. 

 

The time as variable never occurs in the functions of the 

states of the circuit. 

 

For that it’s not necessary applying differential equations 

as in case of analogous circuits. 
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STATIC MODEL OF COMBINATIONAL 

CIRCUITS 

13 

All the operating models of logic automata are static 

models. (That’s valid for systems modeling as well.) 

 

For that there are no time dependent logic functions 

(that is for that static models). 

 

The conception of such static models are favorites of 

systems modeling as well. 
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EXAMPLE: 1-BIT FULL ADDER 

• Its function is to add two bits and the carry from the 

previous position, and to generate the sum and the carry 

A 

Cin 

S 

Cout 

Full adder B 

The full adder as a combinational logic circuit will be used 

throughout in these lectures as vehicle to demonstrate and 

explain various concepts in digital logic 

S = S(A,B,Cin) Cout = C(A,B,Cin) 
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EXAMPLE: 1-BIT FULL ADDER 

15 

FULL ADDER 

16 

The task has been divided into two part-tasks: 

  

Adder block of the bits of i-th positions 

 

and 

 

Carry (Ci ) producing block for the i-th position. 

 

Note 

Both blocks are driven by the same bus 

Both blocks have single output each 

It’s obvious that applying such Full Adders an 

optional number of parallel bits can be added. 
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FULL ADDER: BOOLEAN FUNCTIONS 

 

 

 

 

Sum        _ _           _    _          _ _       

 Si = AiBiCi-1 + AiBiCi-1 + AiBiCi-1 + AiBiCi-1  

 

Carry         _                _                 _ 

 Ci = AiBiCi-1 + AiBiCi-1 + AiBiCi-1 + AiBiCi-1  

 

      = AiBi + AiCi-1 + BiCi-1 = AiBi + (Ai + Bi)Ci-1  

 

      = AiBi + (A i Bi)Ci-1        

 

The sum can be expressed as a three-variable exclusive OR 

function (Si = AiBiCi). 

 

The carry is the three-variable majority function and can also 

be expressed in various other algebraic forms. 
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FULL ADDER: GENERAL RELEVANCE 

The  full adder is the fundamental building block in many 

arithmetic circuits, such as adders and multipliers.  

 

Since these circuits strongly affect the overall performance 

in current digital ICs, their speed optimization is crucial in 

high performance applications, and typical applications 

require a tradeoff between power consumption and speed. 

 

In addition, as arithmetic circuits significantly contribute to 

the overall power budget, their power consumption 

reduction becomes the main objective to pursue in low-

power ICs used in portable electronic equipment. 
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LOGIC OR BOOLEAN ALGEBRA 

 

A SHORT OVERVIEW 

 

 

OR BOOLEAN ALGEBRA IN A NUTSHELL 

20 

BOOLEAN ALGEBRA 

Logic circuits are the basis for modern digital computer and 

other digital systems. To appreciate how digital systems 

operate one  needs to understand digital logic and Boolean 

algebra. 

 

Boolean logic forms the basis for computation in modern 

binary computer systems. One can represent any algorithm, 

or any electronic computer circuit, using a system of 

Boolean equations. 
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BOOLEAN ALGEBRA: ITS ROOTS 

The Boolean algebra is a brand of mathematics that was 

first developed systematically, because of its applications 

to logic, by the English mathematician George Boole, 

around 1850. 

 

A modern engineering application is to switching, digital 

and computer circuit design. 

 

Contributions by Augustus De Morgan (contemporary of 

Boole) and by Claude Shannon (1930’ies and 1940’ies) 

are also important. 

22 

BOOLEAN ALGEBRA AND DIGITAL CIRCUITS  
The connection between Boolean algebra and switching 

circuits has been established by Claude Shannon in the 

1930’s. 

   

Boolean algebra is the main analytical tool for the analysis 

and synthesis of logic circuits and networks.  

 

Boolean logic: Rules for handling Boolean constants and 

variables that can take on 2 values 

 

–True/false; on/off; closed/open; yes/no; 1/0; high/low 

    (voltage) 

–Three fundamental operations: AND, OR and NOT 
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BOOLEAN ALGEBRA: RELEVANCE 

In the 1930s, while studying switching circuits, Claude 

Shannon observed that one could also apply the rules of 

Boole's algebra in this setting, and he introduced switching 

algebra as a way to analyze and design circuits by algebraic 

means in terms of logic gate.  

 

Shannon already had at his disposal the abstract 

mathematical apparatus, thus he cast his switching algebra 

as the two-element Boolean algebra.  

 

In circuit engineering settings today, there is little need to 

consider other Boolean algebras, thus "switching algebra" 

and "Boolean algebra" are often used interchangeably.  

BOOLEAN ALGEBRA: RELEVANCE 

Efficient implementation of Boolean functions is a 

fundamental problem in the design of combinational circuits. 

 

Modern electronic design automation tools for VLSI circuits 

often relay on an efficient representation of Boolean 

functions like (reduced ordered) binary decision diagrams  

(BDD) for logic synthesis and formal verification.  
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BOOLEAN OPERATORS 

• AND 

– Result TRUE if and only  

if both input operands are true 

– C = A  B 

 

• OR 

– Result TRUE if any input operands 

are true 

– C = A + B 

A B C 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

A B C 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
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CMOS IMPLEMENTATION: AND, OR 

AND gate    OR gate 

 

C = A B    C = A + B 

28 

BOOLEAN OPERATORS 

• NOT 

– Result TRUE if single input value is 

FALSE 

– C = A   

A C 

0 1 

1 0 

                       _ 

A                     A  

Implementation 
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BOOLEAN OPERATORS: EXCLUSIVE-OR 

• EXCLUSIVE-OR 

– Result TRUE if either A or B is  

TRUE but not both 

– C = A ⊕ B 

– Can be derived from OR, AND and NOT 

•   

A xor B equals A or B but not both A and B 

•   

A xor B = either A and not B or B and not A 

The XOR is not a fundamental Boolean operator, it can 

rather be considered as one of the (simplest) Boolean 

functions. 

Logic circuit families usually offer XOR „gates” too. 

 

A B C 

0 0 0 

0 1 1 

1 0 1 

1 1 0 
A ⊕ B = (A + B)  ( A  B ) 

A ⊕ B = (A  B ) + ( B  A ) 

CMOS IMPLEMENTATION: XOR 

Vdd Vdd 

A 

B 

A B 

A 

B 

A  B 

                                     _______            

                       _____    _ _ 

Note  A  B = A  B = A B + A B    (!) 
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NOTATIONS:  

ENGINEERING VERSUS MATHEMATICS 

In electrical engineering and digital electronics the dot (), 

the plus sign (+), and the overline (bar) are used for the 

logic operations of AND, OR and NOT respectively. 

 

In mathematics, more specifically in mathematical logic 

(Boolean) algebra the respective notations are 

  

   (conjunction),  

   (disjunction), and  

   (negation). 

32 

AND, OR, NOT, NAND, NOR 
All logic functions and circuits can be described in terms of the 

three fundamental elements. 

While the NOT, AND, OR functions have been designed as 

individual circuits in many circuit families, by far the most 

common functions realized as individual circuits are the NAND 

and NOR circuits. A NAND can be described as equivalent to 

an AND element driving a NOT element. Similarly, a NOR is 

equivalent to an OR element driving a NOT element. 

The reason for this strong bias favouring inverting outputs is 

that the transistor, and the vacuum tube which preceded it, are 

by nature inverters or NOT-type devices when used as signal 

amplifiers. Electric and electronic switches (gates) do not 

readily perform the OR and AND logic operations, but most 

commercially available gates do perform the combined 

operations AND-NOT (NAND) and OR-NOT (NOR). 
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BOOLEAN POSTULATES 

1. Boolean algebra is defined on a set of two-valued  

 elements 

 

2.       Each element of the set has its complementary also  

 belonging to the set  

 

3.        Logic operations: conjunction (logic AND) and  

 disjunction (logic OR) 

 

4.        Logic operations are commutative, associative, and  

 distributive 

 

5.        Special elements of the set are the unity (its value is  

 always 1) and the zero (its value is always 0) 

34 

MANIPULATE EXPRESSIONS 

BOOLEAN MINIMIZATION 
Need a way to manipulate expressions.  

Rules of ‘adding’, ‘multiplying’ plus associative, distributive laws 

etc. The rules are very similar to basic algebra. 

 

One can transform one Boolean expression into an equivalent 

expression by applying the postulates the theorems of Boolean 

algebra. This is important if one wants to convert a given 

expression to a canonical form (a standardized form) or if one 

wants to minimize the number of literals (asserted or negated 

variables) or terms in an expression. Minimizing terms and 

expressions can be important because electrical circuits often 

consist of individual components that implement each term or 

literal for a given expression. Minimizing the expression allows 

the designer to use fewer electrical components and, therefore, 

can reduce the cost of the system. 
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BOOLEAN THEOREMS 

 commutative law 

   A • B = B • A 

   A + B = B + A 

 

 associative law  

  A • (B • C) = (A • B) • C = A • B • C 

  A + (B + C) = (A + B)+ C = A + B + C 

 

 distributive law 

  A • (B + C) = A • B + A • C 

  A + (B • C) = (A + B) • (A + C) 

 

The theorems above appear in pairs. Each pair form a dual. 

36 

DE MORGAN’S THEOREM 

De Morgan’s theorem occupies an important place in the logic 

(Boolean) algebra 

   ––––––        —    —  

   A + B = A • B 

   –––––         —     — 

   A • B = A + B   

 

In logic, De Morgan’s laws (or theorem) are rules in formal 

logic relating pairs of dual logic operators in a systematic 

manner expressed in terms of negation. De Morgan’s 

theorem may be applied to the negation of a disjunction or to 

the negation of a conjunction in all part of a formula.  
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DE MORGAN’S THEOREM 

Negation of a disjunction  

   ––––––         —    —  

   A + B = A • B 

 

Since two things are false, it’s also false that either of them is 

true. 

 

Negation of  conjunction 

    –––––        —     — 

   A • B = A + B   

 

Since it is false that two things together are true, at last one of 

them should be false.   

38 

DE MORGAN’S THEOREM ON THE K-MAP 
   ––––––        —    —  

   A + B = A • B 

   –––––         —     — 

   A • B = A + B   

Representation of De Morgan’s theorem on the Karnaugh 

map or Veitch diagram. 
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DE MORGAN’S THEOREM 

De Morgan’s formulation of his theorem influenced the 

algebraization of logic undertaken by Boole, which cemented 

De Morgan’s claim to the find, although a similar observation 

was made by Aristotle and was known to Greek and Medieval 

logicians, e.g. to William Ockham (1325), the great medieval 

scholastic philosopher. 

 

In electrical engineering context the negation operator can be 

written as an overline (bar) above the terms to be negated.  

 

In the originate the mnemonic 

 

  ”break the line, change the operation” 
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BOOLEAN THEOREMS: DUALITY 

The theorems above appear in pairs. Each pair form a dual. 

An important principle in the Boolean algebra system is that of 

duality. Any valid expression you can create using the 

postulates and theorems of Boolean algebra remains 

valid if you interchange the operators and constants appearing 

in the expression. Specifically, if one exchanges the • (AND)  

and + (OR) operators and swaps the 0 and 1 values in an 

expression, one will wind up with an expression that obeys all 

the rules of Boolean algebra. This does not mean the dual 

expression computes the same values, it only means that both 

expressions are legal in the Boolean algebra system. 

Therefore, this is an easy way to generate a second theorem 

for any fact one proves in the Boolean algebra system. 
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GENERALIZATIONS OF DE MORGAN’S 

THEOREMS 

The De Morgan’s theorem is an important tool in the 

analysis and synthesis of digital and logic circuits. Its 

generalization to several variables is stated below 

 

  _____       _    _     _ 

  A B C ... = A + B + C + ... 

 

  ________           _ _  _ 

  A + B + C + ... = A B C ...  

42 

SHANNON’S GENERALIZATION OF  

DE MORGAN’S THEOREMS 

The De Morgan-Shannon’s theorem refers to the logic or 

Boolean functions constructed using logic multiplications 

and additions 

 _____________         _  _   _ 

 f(A, B, C, ..., +, •)  = f(A, B, C, ..., •, +) 

 

The negation of the function can be performed by 

negating each variable and replacing all logic 

summations (ORs) with logic multiplications (ANDs) and 

replacing all logic multiplications (ANDs) with logic 

summations (ORs).  
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SHANNON’S EXPANSION THEOREMS 

                                                       __ 

F(X1, X2,…Xn) = X1 F(1,X2,…Xn) + X1 F(0,X2,…Xn) 

                                                          __ 

F(X1, X2,…Xn) = X1 + F(0,X2,…Xn) X1 + F(1,X2,…Xn) 

 

Application: decomposition of logic functions to smaller 

blocks, or for implementation using MUX based logic cells. 

Example: 
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BOOLEAN FUNCTIONS 

The one- and two-variable operations  of Boolean algebra can 

be considered as functions of one and two variables, 

respectively. 

In the case of generalized functions the number of variables is 

extended only.  

n-variable Boolean or logic function  

 

   Z = f(X1, X2, .........Xn) 

 

The particular truth value  of Z is defined by the f function.  
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WHAT IS A BOOLEAN FUNCTION? 

45 

46 
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CLASSIFICATION OF BOOLEAN 

FUNCTIONS OF TWO VARIABLES 

Name of the function  f(A,B) 

——————————————————————              

Logical constants   0, 1   

         —          —     

Functions of one variable   A, A, B, B 

                      ——    ——— 

AND, OR, NAND, NOR  A•B, A+B, A•B, A+B 

     —             —    — —  

XOR (AB ), XNOR (AB) A B+A B,  A B+A B 

 

INHIBITION      A  B, B  A 

 

IMPLICATION   A  B, B  A 
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BOOLEAN FUNCTIONS OF TWO VARIABLE 

V
A
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Egyargumentumos
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Logikai konstansok
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NAND 

 

 

 

 

OR  NOR 

 

 

Boolean constants 

One variable 

One variable 
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THE 16 POSSIBLE BOLEAN FUNCTINS 

OF TWO VARIABLES 

50 

BOOLEAN FUNCTIOS AND OPERATIONS 

OF TWO VARIABLES: A SUMMARY 

From the 16 possible two-variable Boolean functions  

 
6 can be considered as trivial  
 (2 of them are constants, 4 of them are in fact  
 one-variable functions) 
 
From the 10 non-trivial functions 
 2 (AND and OR) and their complementary  
 (AND-NOT and OR-NOT)  
 as well as the EXCLUSIVE-OR (antivalency)  
 and the EXCLUSIVE-NOR (equivalency) 
are of significance for the practice.  
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IC IMPLEMENTATION: E.G. 74HC/HCT181 

 Total 16 arithmetic operations (add, subtract, plus, shift,  plus 12 others) 

• Total 16 logic operations (XOR, AND, NAND, NOR, OR, plus 11 others) 

• Capable of active-high and active-low operation 
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WAYS TO DEFINE LOGIC FUNCTIONS 

How to define a logic function? 

 There are several possible ways to do it. 

 

Truth  table or its special forms, like 

 - characteristic number 

 - canonical (algebraic) forms 

(These are unique definitions – with some conditions) 

 Developed in 1854 by George Boole 

 Further developed by Claude Shannon (Bell Labs) 

 Outputs are computed for all possible input 

  combinations 

Graphic representation with Karnaugh map 

(This one is unique too) 

So called algebraic form, which is not unique. 

Some appropriate function-definition language, like VHDL 
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DEFINITION OF A LOGIC FUNCTIONS  

BY ITS 1 VALUES 

List the indices of those variable combinations to which a 1 

value of the function belongs to. 

 

This kind of definition also needs the agreement on the 

weights of the variables. 

 

This definition is known as (extended) SOP (sum-of-products) 

or disjunctive canonical form. 

 

This definition is also unique similarly to the characteristic 

number. 

54 
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THE DISJUNTIVE CANONICAL FORM 

55 

56 

EXAMPLE: SOP FORM OF THE MAJORITY 

GATE  
• The (extended) SOP form for the 3-input majority gate is: 

• M = m3 + m5 +m6 +m7  =   3(3, 5, 6, 7) 

• Each of the 2n terms are called minterms, running from 0 to 

2n – 1 

• Note the relationship between minterm number and Boolean 

value. 

Two-level AND-OR  

implementation: 

 

CMOS (SSI) 

implementation: 4062 

logic dual majority gate 
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THE CONJUNCTIVE CANONICAL FORM 

(EXTENDED) PRODUCT-OF-SUMS 

 

 

 

There exist an other canonical form, the conjunctive 

canonical form, or the (extended) product-of-sums (POS) 

form. 

This is also unique. 

 

The two canonical forms are equivalent and can be 

transformed into each other using the De Morgan theorem. 
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CONVERSION OF CANONICAL FORMS 

Demo: SOP to POS conversion 

 

  F(ABC) = 3(2,3,4,6) 

 

1st step: obtain the minterm indices of the negated function 

(0-s in the truth table)  

  _  

  F(ABC) = 3(0,1,5,7) 

 

2nd step: to obtain the maxterm indices complement the 

minterm indices of the negated function 

   

  F(ABC) = 3(0,2,6,7) 
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DEFINITION OF A LOGIC FUNCTION  

BY ITS MINTERMS 

A
i

B
i

C
i-1

D
i

i
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1

0
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(4) (2) (1)

C
i

0

0

0

1

1
1

0

1

D
i
= (1,2,4,7)

C
i = (3,5,6,7)

Example: 1-bit full adder 

Si = m1
3 + m2

3 + m4
3 + m7

3 = 

 

 = Σ3(1,2,4,7) 

 

        _   _ 
E. g.  m2

3 = A B C, etc. 

Si 
 

Si 

60 

DEFINITION  OF THE FUNCTION BY  

CHARACTERISTIC NUMBER 

  
Defining a logic function by its characteristic 

number is unanimous only if the weights of 

the independent variables are fixed 

beforehand.    
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THE DISJUNCTIVE CANONICAL FORM 

(EXPANDED) SUM-OF-PRODUCTS 

The minterms of all n-variable functions are n-literal products 

 

Any logic function of n-variables can be defines by a sum of 

n-variable minterms (sum of products, SOP) 

 

This is unambiguous only if the weighing of the independent 

variables is given. 

 

Since logic summing is disjunction, this form is also known as 

disjunctive canonical form of a logic function. 

 

The corresponding SOP is termed as expanded sum-of-

products form 
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EXAMPLE:  

THE TWO CANONICAL FORMS OF XOR 

The (trivial) extended SOP form (disjunctive canonical form) of 

the XOR function (F(A,B) = A  B is 

 

          _           _   

   F = A B + A B = Σ2 (1,2) 

 

The extended POS form (conjunctive canonical form) of the 

same function is 

          _      _                                        

   F = (A + B) (A + B) = Π2 (0,3) 
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CANONICAL FORMS, MINTERMS, AND 

PRIME IMPLICANTS 

  
The ”standard sum-of-products form” is also known as the 

”minterm canonical form” or ”canonic sum function”. It is a 

”sum” (OR) of minterms. 

 

A minterm is also known as the ”standard product” or 

”canonic product term”. This is a term where each variable is 

used once and once only. 

 

A ”prime implicant” is an implicant of a function which does 

not imply any other implicant of the function. 
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PRIME IMPLICANTS: CLASSIFICATION  

   

 

Essential prime implicants 

Non-essential prime implicants 

Classification is conditional 
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PRIME IMPLICANTS TABLE  

1 3 6 7 8 9 12 13 14 15 

6, 7,14,15 x x x x 

8,9,12,13 x x x x 

12,13,14,15 x x x x 

1,3 x x 

1,9 x x 

3,7 x x 

REVISION QUESTIONS 

1. Describe and discuss the fundamental properties of 

combinational logic circuits. 

 

2. State and interpret DeMorgan’s theorem. 

  

3. State and interpret Shannon’s extension of DeMorgan’s 

theorem. 

  

4. Interpret and explain the following concepts: 

(standard/extended) sum-of-product form, also known as 

(minterm/disjunctive) canonical form 

(standard/extended) product-of-sum form, also known as 

(maxterm/conjunctive) canonical form. 

Prime imnplicants: essential and non-essential 

  

. 
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REVISION QUESTIOS 

67 

4. What is the function of a (1-bit) full adder? Write down 

the truth table showing all the possible input and output 

conditions. 

 

Show that the sum (S) function of the one-bit full adder can 

be expressed in terms of the three inputs (A, B, and Cin) 

and of the carry out (Cout) as 

  

                          ___ 

  S = (A + B +Cin )Cout + A B Cin     

  

What is the function of a (1-bit) half adder? How is it 

different from a full adder? 
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PROBLEMS AND EXERCISES 

1. Find the canonic algebraic forms of the logic function 

  

 F(A,B,C) = A B + A C 

  

2. List the minterm and maxterm indices of the logic function below 

  

                    _ _  _    _  _        _     _        _  

 F(A B C) = A B C + A B C + A B C + A B C 
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PROBLEMS AND EXERCISES 

3. Draw the diagram of the implementation of the 1-bit full 

adder using 

 

3.1. Homogenous NOR circuit. 

3.2. 4-to-1 multiplexers and additional simple gates as 

necessary. 

3.3. Transistor level diagram in CMOS architecture (28 

transistors). 
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PROBLEMS AND EXERCISES 

4. Determine the function F(A,B,X,Y) in algebraic form, 

realized by the following network. 
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    THE END 
 


