
1

1

DIGITAL TECHNICS

Dr. Bálint Pődör

Óbuda University,

Microelectronics and Technology Institute

 1. LECTURE:

COMBINATONAL CIRCUITS BASIC CONCEPTS

 1st (Autumn) term 2018/2019

2

1. LECTURE: COMBINATONAL CIRCUITS

BASIC CONCEPTS

1. General introduction to the course

2. Combinational circuits: basic concepts

3. Boolean algebra and logic functions: a review

2

3

AIMS AND SCOPE OF THE COURSE

This course will give an overview of the basic concepts and

applications of digital technics, from Boolean algebra to

microprocessors.

The lectures will cover more advanced materials and subjects

than those contained the introductory three semester course

of the B.Sc. programme. It will focus more on the general

concepts of the subject and less on the practical details.

In this respect it is supposed that the students have already a

good foundation and a certain level of hands-on experience in

digital technics and electronics.

4

TOPICS IN FOCUS

Basic concepts of digital technics

Programmable Logic Devices (PLDs) and Field

 Programmable Gate Arrays (FGPAs)

Digital (combinational) design and synthesis

Synchronous sequential circuits analysis and synthesis

Arithmetic circuits, adders and multipliers

MOS, CMOS and VLSI digital circuits.

D/A and A/D converters.

3

5

COMBINATIONAL CIRCUITS:

AN INTRODUCTION

WITH EXAMPLES

DIGITAL NETWORKS: CLASSIFICATION

Digital/logic circuits/networks can be classified into two

groups:

1. Combinational logic networks

Results of an operation depend only on the present inputs to

the operation

Uses: perform arithmetic, control data movement, compare

values for decision making

2. Sequential logic networks

Results depend on both the inputs to the operation and the

result of the previous operation

Uses: counter, controllers, etc.

4

7

COMBINATIONAL CIRCUITS:

GENERALIZED MODEL AND PROPERTIES

The combinational circuit maps an input (signal) combination

 to an output (signal) combination.

 A combinational circuit is a circuit with no ”memory”.

 The same input combination always implies the very same

 output combination (except transients).

 The reverse is not true. For a given output combination

 different input combinations can belong.

Combinational

circuit

Yi = Fi (A, B, ..., N) i = 1, 2, ... M

Black-box model of combinational circuits.

COMBINATIONAL CIRCUITS:

GENERALIZED MODEL AND PROPERTIES

8

5

COMBINATIONAL CIRCUITS:

GENERALIZED MODEL AND PROPERTIES

9

COMBINATIONAL CIRCUITS:

GENERALIZED MODEL AND PROPERTIES

10

6

COMBINATIONAL CIRCUITS:

THE MAPPING FUNCTION

11

STATIC MODEL OF COMBINATIONAL

CIRCUITS

12

A static model represents the state sequence of a circuit,

i.e. its event history and never describes its transients.

The time as variable never occurs in the functions of the

states of the circuit.

For that it’s not necessary applying differential equations

as in case of analogous circuits.

7

STATIC MODEL OF COMBINATIONAL

CIRCUITS

13

All the operating models of logic automata are static

models. (That’s valid for systems modeling as well.)

For that there are no time dependent logic functions

(that is for that static models).

The conception of such static models are favorites of

systems modeling as well.

14

EXAMPLE: 1-BIT FULL ADDER

• Its function is to add two bits and the carry from the

previous position, and to generate the sum and the carry

A

Cin

S

Cout

Full adder B

The full adder as a combinational logic circuit will be used

throughout in these lectures as vehicle to demonstrate and

explain various concepts in digital logic

S = S(A,B,Cin) Cout = C(A,B,Cin)

8

EXAMPLE: 1-BIT FULL ADDER

15

FULL ADDER

16

The task has been divided into two part-tasks:

Adder block of the bits of i-th positions

and

Carry (Ci) producing block for the i-th position.

Note

Both blocks are driven by the same bus

Both blocks have single output each

It’s obvious that applying such Full Adders an

optional number of parallel bits can be added.

9

17

FULL ADDER: BOOLEAN FUNCTIONS

Sum _ _ _ _ _ _

 Si = AiBiCi-1 + AiBiCi-1 + AiBiCi-1 + AiBiCi-1

Carry _ _ _

 Ci = AiBiCi-1 + AiBiCi-1 + AiBiCi-1 + AiBiCi-1

 = AiBi + AiCi-1 + BiCi-1 = AiBi + (Ai + Bi)Ci-1

 = AiBi + (A i Bi)Ci-1

The sum can be expressed as a three-variable exclusive OR

function (Si = AiBiCi).

The carry is the three-variable majority function and can also

be expressed in various other algebraic forms.

18

FULL ADDER: GENERAL RELEVANCE

The full adder is the fundamental building block in many

arithmetic circuits, such as adders and multipliers.

Since these circuits strongly affect the overall performance

in current digital ICs, their speed optimization is crucial in

high performance applications, and typical applications

require a tradeoff between power consumption and speed.

In addition, as arithmetic circuits significantly contribute to

the overall power budget, their power consumption

reduction becomes the main objective to pursue in low-

power ICs used in portable electronic equipment.

10

19

LOGIC OR BOOLEAN ALGEBRA

A SHORT OVERVIEW

OR BOOLEAN ALGEBRA IN A NUTSHELL

20

BOOLEAN ALGEBRA

Logic circuits are the basis for modern digital computer and

other digital systems. To appreciate how digital systems

operate one needs to understand digital logic and Boolean

algebra.

Boolean logic forms the basis for computation in modern

binary computer systems. One can represent any algorithm,

or any electronic computer circuit, using a system of

Boolean equations.

11

21

BOOLEAN ALGEBRA: ITS ROOTS

The Boolean algebra is a brand of mathematics that was

first developed systematically, because of its applications

to logic, by the English mathematician George Boole,

around 1850.

A modern engineering application is to switching, digital

and computer circuit design.

Contributions by Augustus De Morgan (contemporary of

Boole) and by Claude Shannon (1930’ies and 1940’ies)

are also important.

22

BOOLEAN ALGEBRA AND DIGITAL CIRCUITS
The connection between Boolean algebra and switching

circuits has been established by Claude Shannon in the

1930’s.

Boolean algebra is the main analytical tool for the analysis

and synthesis of logic circuits and networks.

Boolean logic: Rules for handling Boolean constants and

variables that can take on 2 values

–True/false; on/off; closed/open; yes/no; 1/0; high/low

 (voltage)

–Three fundamental operations: AND, OR and NOT

12

BOOLEAN ALGEBRA: RELEVANCE

In the 1930s, while studying switching circuits, Claude

Shannon observed that one could also apply the rules of

Boole's algebra in this setting, and he introduced switching

algebra as a way to analyze and design circuits by algebraic

means in terms of logic gate.

Shannon already had at his disposal the abstract

mathematical apparatus, thus he cast his switching algebra

as the two-element Boolean algebra.

In circuit engineering settings today, there is little need to

consider other Boolean algebras, thus "switching algebra"

and "Boolean algebra" are often used interchangeably.

BOOLEAN ALGEBRA: RELEVANCE

Efficient implementation of Boolean functions is a

fundamental problem in the design of combinational circuits.

Modern electronic design automation tools for VLSI circuits

often relay on an efficient representation of Boolean

functions like (reduced ordered) binary decision diagrams

(BDD) for logic synthesis and formal verification.

13

25

26

BOOLEAN OPERATORS

• AND

– Result TRUE if and only

if both input operands are true

– C = A  B

• OR

– Result TRUE if any input operands

are true

– C = A + B

A B C

0 0 0

0 1 0

1 0 0

1 1 1

A B C

0 0 0

0 1 1

1 0 1

1 1 1

14

27

CMOS IMPLEMENTATION: AND, OR

AND gate OR gate

C = A B C = A + B

28

BOOLEAN OPERATORS

• NOT

– Result TRUE if single input value is

FALSE

– C = A

A C

0 1

1 0

 _

A A

Implementation

15

29

BOOLEAN OPERATORS: EXCLUSIVE-OR

• EXCLUSIVE-OR

– Result TRUE if either A or B is

TRUE but not both

– C = A ⊕ B

– Can be derived from OR, AND and NOT

•

A xor B equals A or B but not both A and B

•

A xor B = either A and not B or B and not A

The XOR is not a fundamental Boolean operator, it can

rather be considered as one of the (simplest) Boolean

functions.

Logic circuit families usually offer XOR „gates” too.

A B C

0 0 0

0 1 1

1 0 1

1 1 0
A ⊕ B = (A + B)  (A  B)

A ⊕ B = (A  B) + (B  A)

CMOS IMPLEMENTATION: XOR

Vdd Vdd

A

B

A B

A

B

A  B

 _____ _ _

Note A  B = A  B = A B + A B (!)

16

31

NOTATIONS:

ENGINEERING VERSUS MATHEMATICS

In electrical engineering and digital electronics the dot (),

the plus sign (+), and the overline (bar) are used for the

logic operations of AND, OR and NOT respectively.

In mathematics, more specifically in mathematical logic

(Boolean) algebra the respective notations are

  (conjunction),

  (disjunction), and

  (negation).

32

AND, OR, NOT, NAND, NOR
All logic functions and circuits can be described in terms of the

three fundamental elements.

While the NOT, AND, OR functions have been designed as

individual circuits in many circuit families, by far the most

common functions realized as individual circuits are the NAND

and NOR circuits. A NAND can be described as equivalent to

an AND element driving a NOT element. Similarly, a NOR is

equivalent to an OR element driving a NOT element.

The reason for this strong bias favouring inverting outputs is

that the transistor, and the vacuum tube which preceded it, are

by nature inverters or NOT-type devices when used as signal

amplifiers. Electric and electronic switches (gates) do not

readily perform the OR and AND logic operations, but most

commercially available gates do perform the combined

operations AND-NOT (NAND) and OR-NOT (NOR).

17

33

BOOLEAN POSTULATES

1. Boolean algebra is defined on a set of two-valued

 elements

2. Each element of the set has its complementary also

 belonging to the set

3. Logic operations: conjunction (logic AND) and

 disjunction (logic OR)

4. Logic operations are commutative, associative, and

 distributive

5. Special elements of the set are the unity (its value is

 always 1) and the zero (its value is always 0)

34

MANIPULATE EXPRESSIONS

BOOLEAN MINIMIZATION
Need a way to manipulate expressions.

Rules of ‘adding’, ‘multiplying’ plus associative, distributive laws

etc. The rules are very similar to basic algebra.

One can transform one Boolean expression into an equivalent

expression by applying the postulates the theorems of Boolean

algebra. This is important if one wants to convert a given

expression to a canonical form (a standardized form) or if one

wants to minimize the number of literals (asserted or negated

variables) or terms in an expression. Minimizing terms and

expressions can be important because electrical circuits often

consist of individual components that implement each term or

literal for a given expression. Minimizing the expression allows

the designer to use fewer electrical components and, therefore,

can reduce the cost of the system.

18

35

BOOLEAN THEOREMS

 commutative law

 A • B = B • A

 A + B = B + A

 associative law

 A • (B • C) = (A • B) • C = A • B • C

 A + (B + C) = (A + B)+ C = A + B + C

 distributive law

 A • (B + C) = A • B + A • C

 A + (B • C) = (A + B) • (A + C)

The theorems above appear in pairs. Each pair form a dual.

36

DE MORGAN’S THEOREM

De Morgan’s theorem occupies an important place in the logic

(Boolean) algebra

 –––––– — —

 A + B = A • B

 ––––– — —

 A • B = A + B

In logic, De Morgan’s laws (or theorem) are rules in formal

logic relating pairs of dual logic operators in a systematic

manner expressed in terms of negation. De Morgan’s

theorem may be applied to the negation of a disjunction or to

the negation of a conjunction in all part of a formula.

19

37

DE MORGAN’S THEOREM

Negation of a disjunction

 –––––– — —

 A + B = A • B

Since two things are false, it’s also false that either of them is

true.

Negation of conjunction

 ––––– — —

 A • B = A + B

Since it is false that two things together are true, at last one of

them should be false.

38

DE MORGAN’S THEOREM ON THE K-MAP
 –––––– — —

 A + B = A • B

 ––––– — —

 A • B = A + B

Representation of De Morgan’s theorem on the Karnaugh

map or Veitch diagram.

20

39

DE MORGAN’S THEOREM

De Morgan’s formulation of his theorem influenced the

algebraization of logic undertaken by Boole, which cemented

De Morgan’s claim to the find, although a similar observation

was made by Aristotle and was known to Greek and Medieval

logicians, e.g. to William Ockham (1325), the great medieval

scholastic philosopher.

In electrical engineering context the negation operator can be

written as an overline (bar) above the terms to be negated.

In the originate the mnemonic

 ”break the line, change the operation”

40

BOOLEAN THEOREMS: DUALITY

The theorems above appear in pairs. Each pair form a dual.

An important principle in the Boolean algebra system is that of

duality. Any valid expression you can create using the

postulates and theorems of Boolean algebra remains

valid if you interchange the operators and constants appearing

in the expression. Specifically, if one exchanges the • (AND)

and + (OR) operators and swaps the 0 and 1 values in an

expression, one will wind up with an expression that obeys all

the rules of Boolean algebra. This does not mean the dual

expression computes the same values, it only means that both

expressions are legal in the Boolean algebra system.

Therefore, this is an easy way to generate a second theorem

for any fact one proves in the Boolean algebra system.

21

41

GENERALIZATIONS OF DE MORGAN’S

THEOREMS

The De Morgan’s theorem is an important tool in the

analysis and synthesis of digital and logic circuits. Its

generalization to several variables is stated below

 _____ _ _ _

 A B C ... = A + B + C + ...

 ________ _ _ _

 A + B + C + ... = A B C ...

42

SHANNON’S GENERALIZATION OF

DE MORGAN’S THEOREMS

The De Morgan-Shannon’s theorem refers to the logic or

Boolean functions constructed using logic multiplications

and additions

 _____________ _ _ _

 f(A, B, C, ..., +, •) = f(A, B, C, ..., •, +)

The negation of the function can be performed by

negating each variable and replacing all logic

summations (ORs) with logic multiplications (ANDs) and

replacing all logic multiplications (ANDs) with logic

summations (ORs).

22

43

SHANNON’S EXPANSION THEOREMS

 __

F(X1, X2,…Xn) = X1 F(1,X2,…Xn) + X1 F(0,X2,…Xn)

 __

F(X1, X2,…Xn) = X1 + F(0,X2,…Xn) X1 + F(1,X2,…Xn)

Application: decomposition of logic functions to smaller

blocks, or for implementation using MUX based logic cells.

Example:

44

BOOLEAN FUNCTIONS

The one- and two-variable operations of Boolean algebra can

be considered as functions of one and two variables,

respectively.

In the case of generalized functions the number of variables is

extended only.

n-variable Boolean or logic function

 Z = f(X1, X2,Xn)

The particular truth value of Z is defined by the f function.

23

WHAT IS A BOOLEAN FUNCTION?

45

46

24

47

CLASSIFICATION OF BOOLEAN

FUNCTIONS OF TWO VARIABLES

Name of the function f(A,B)

——————————————————————

Logical constants 0, 1

 — —

Functions of one variable A, A, B, B

 —— ———

AND, OR, NAND, NOR A•B, A+B, A•B, A+B

 — — — —

XOR (AB), XNOR (AB) A B+A B, A B+A B

INHIBITION A  B, B  A

IMPLICATION A  B, B  A

48

BOOLEAN FUNCTIONS OF TWO VARIABLE

V
A

G
Y 1

A B

0 0

0 1

1 0

1 1

f
0

f
1

f
2

f
3

f
4

f
5

f
6

f
7

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

f
8

f
9

f
10

f
11

f
12

f
13

f
14

f
15

1

0

0

0

1

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

0

É
S É
S

-N
E

M

V
A

G
Y

-N
E

M

A AB B

Egyargumentumos

Egyargumentumos

Logikai konstansok

AND

NAND

OR NOR

Boolean constants

One variable

One variable

25

49

THE 16 POSSIBLE BOLEAN FUNCTINS

OF TWO VARIABLES

50

BOOLEAN FUNCTIOS AND OPERATIONS

OF TWO VARIABLES: A SUMMARY

From the 16 possible two-variable Boolean functions

6 can be considered as trivial
 (2 of them are constants, 4 of them are in fact
 one-variable functions)

From the 10 non-trivial functions
 2 (AND and OR) and their complementary
 (AND-NOT and OR-NOT)
 as well as the EXCLUSIVE-OR (antivalency)
 and the EXCLUSIVE-NOR (equivalency)
are of significance for the practice.

26

51

IC IMPLEMENTATION: E.G. 74HC/HCT181

 Total 16 arithmetic operations (add, subtract, plus, shift, plus 12 others)

• Total 16 logic operations (XOR, AND, NAND, NOR, OR, plus 11 others)

• Capable of active-high and active-low operation

52

WAYS TO DEFINE LOGIC FUNCTIONS

How to define a logic function?

 There are several possible ways to do it.

Truth table or its special forms, like

 - characteristic number

 - canonical (algebraic) forms

(These are unique definitions – with some conditions)

 Developed in 1854 by George Boole

 Further developed by Claude Shannon (Bell Labs)

 Outputs are computed for all possible input

 combinations

Graphic representation with Karnaugh map

(This one is unique too)

So called algebraic form, which is not unique.

Some appropriate function-definition language, like VHDL

27

53

DEFINITION OF A LOGIC FUNCTIONS

BY ITS 1 VALUES

List the indices of those variable combinations to which a 1

value of the function belongs to.

This kind of definition also needs the agreement on the

weights of the variables.

This definition is known as (extended) SOP (sum-of-products)

or disjunctive canonical form.

This definition is also unique similarly to the characteristic

number.

54

28

THE DISJUNTIVE CANONICAL FORM

55

56

EXAMPLE: SOP FORM OF THE MAJORITY

GATE
• The (extended) SOP form for the 3-input majority gate is:

• M = m3 + m5 +m6 +m7 = 3(3, 5, 6, 7)

• Each of the 2n terms are called minterms, running from 0 to

2n – 1

• Note the relationship between minterm number and Boolean

value.

Two-level AND-OR

implementation:

CMOS (SSI)

implementation: 4062

logic dual majority gate

29

57

THE CONJUNCTIVE CANONICAL FORM

(EXTENDED) PRODUCT-OF-SUMS

There exist an other canonical form, the conjunctive

canonical form, or the (extended) product-of-sums (POS)

form.

This is also unique.

The two canonical forms are equivalent and can be

transformed into each other using the De Morgan theorem.

58

CONVERSION OF CANONICAL FORMS

Demo: SOP to POS conversion

 F(ABC) = 3(2,3,4,6)

1st step: obtain the minterm indices of the negated function

(0-s in the truth table)

 _

 F(ABC) = 3(0,1,5,7)

2nd step: to obtain the maxterm indices complement the

minterm indices of the negated function

 F(ABC) = 3(0,2,6,7)

30

59

DEFINITION OF A LOGIC FUNCTION

BY ITS MINTERMS

A
i

B
i

C
i-1

D
i

i

0

1

2

3

4

5

6

7

0

0

0

0

1
1
1

1

0

0

0
0

1

1

1

1

0

1

0

0

1

1

1

0

0

0

1

1

1

1

0
0

(4) (2) (1)

C
i

0

0

0

1

1
1

0

1

D
i
= (1,2,4,7)

C
i = (3,5,6,7)

Example: 1-bit full adder

Si = m1
3 + m2

3 + m4
3 + m7

3 =

 = Σ3(1,2,4,7)

 _ _
E. g. m2

3 = A B C, etc.

Si

Si

60

DEFINITION OF THE FUNCTION BY

CHARACTERISTIC NUMBER

Defining a logic function by its characteristic

number is unanimous only if the weights of

the independent variables are fixed

beforehand.

31

61

THE DISJUNCTIVE CANONICAL FORM

(EXPANDED) SUM-OF-PRODUCTS

The minterms of all n-variable functions are n-literal products

Any logic function of n-variables can be defines by a sum of

n-variable minterms (sum of products, SOP)

This is unambiguous only if the weighing of the independent

variables is given.

Since logic summing is disjunction, this form is also known as

disjunctive canonical form of a logic function.

The corresponding SOP is termed as expanded sum-of-

products form

62

EXAMPLE:

THE TWO CANONICAL FORMS OF XOR

The (trivial) extended SOP form (disjunctive canonical form) of

the XOR function (F(A,B) = A  B is

 _ _

 F = A B + A B = Σ2 (1,2)

The extended POS form (conjunctive canonical form) of the

same function is

 _ _

 F = (A + B) (A + B) = Π2 (0,3)

32

63

CANONICAL FORMS, MINTERMS, AND

PRIME IMPLICANTS

The ”standard sum-of-products form” is also known as the

”minterm canonical form” or ”canonic sum function”. It is a

”sum” (OR) of minterms.

A minterm is also known as the ”standard product” or

”canonic product term”. This is a term where each variable is

used once and once only.

A ”prime implicant” is an implicant of a function which does

not imply any other implicant of the function.

64

PRIME IMPLICANTS: CLASSIFICATION

Essential prime implicants

Non-essential prime implicants

Classification is conditional

33

65

PRIME IMPLICANTS TABLE

1 3 6 7 8 9 12 13 14 15

6, 7,14,15 x x x x

8,9,12,13 x x x x

12,13,14,15 x x x x

1,3 x x

1,9 x x

3,7 x x

REVISION QUESTIONS

1. Describe and discuss the fundamental properties of

combinational logic circuits.

2. State and interpret DeMorgan’s theorem.

3. State and interpret Shannon’s extension of DeMorgan’s

theorem.

4. Interpret and explain the following concepts:

(standard/extended) sum-of-product form, also known as

(minterm/disjunctive) canonical form

(standard/extended) product-of-sum form, also known as

(maxterm/conjunctive) canonical form.

Prime imnplicants: essential and non-essential

.

34

REVISION QUESTIOS

67

4. What is the function of a (1-bit) full adder? Write down

the truth table showing all the possible input and output

conditions.

Show that the sum (S) function of the one-bit full adder can

be expressed in terms of the three inputs (A, B, and Cin)

and of the carry out (Cout) as

 S = (A + B +Cin)Cout + A B Cin

What is the function of a (1-bit) half adder? How is it

different from a full adder?

68

PROBLEMS AND EXERCISES

1. Find the canonic algebraic forms of the logic function

 F(A,B,C) = A B + A C

2. List the minterm and maxterm indices of the logic function below

 _ _ _ _ _ _ _ _

 F(A B C) = A B C + A B C + A B C + A B C

35

69

PROBLEMS AND EXERCISES

3. Draw the diagram of the implementation of the 1-bit full

adder using

3.1. Homogenous NOR circuit.

3.2. 4-to-1 multiplexers and additional simple gates as

necessary.

3.3. Transistor level diagram in CMOS architecture (28

transistors).

70

PROBLEMS AND EXERCISES

4. Determine the function F(A,B,X,Y) in algebraic form,

realized by the following network.

36

71

 THE END

