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2. LECTURE: CONTENTS 

1. Canonical forms of Boolean functions 

 

2. Logic design and minimization of logic functions 

 

3. Minimization using the Quine-McCluskey method 

 

4. The Karnaugh map, general properties 

 

5. Minimization in EXCLUSIVE-OR logic 

 

6. Hazards in digital logic circuits 
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CANONICAL FORMS OF LOGIC 

FUNCTIONS 

It is expedient to base the synthesis of combinational circuit 

on the algebraic form of the logic function to be realized. 

Because a logic function can have several equivalent 

algebraic forms, the basis of the synthesis is one of the 

canonical forms (extended SOP or extended POS forms).  

 

The  disjunctive canonical form (extended sum-of-product, 

SOP) is given as a sum of conjunctive terms, i.e. minterms.  

 

The  conjunctive canonical form (extended product-of-sum, 

POS) is given as a product of disjunctive terms, i.e. 

maxterms.  
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EMPHASIS: DISJUNCTIVE CANONICAL 

FORM EXTENDED SOP 

Disjunctive canonic form (or extended sum-of-product form): 

Algebraic form consisting of  sum of logic product terms 

(AND-OR) having the distinctive property that in each 

product term all variables are contained either in asserted or 

in negated form. 

 

E. g. 

           —   —     —              — —          — 

 F(ABC) = ABC + ABC + ABC + ABC 

 

 F(ABC) = m2
3 + m3

3 + m4
3 + m6

3  

   

   F = 3(2,3,4,6) 
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EMPHASIS: CONJUNCTIVE CANONICAL 

FORM EXTENDED POS 

Conjunctive canonic form (or extended product-of-sum 

form): Algebraic form consisting of  product of logic sumt 

terms (OR-AND) having the distinctive property that in each 

sum term all variables are contained either in asserted or in 

negated form. 

    ———— 

    ————                

  F(ABC) = F(ABC) =  

                —     —                —     —      —       —  

   (A + B + C) (A + B + C) (A + B + C) (A + B + C)  

 

  F(ABC) = M7
3M6

3M2
3M0

3 

 

  F(ABC) = 3(0,2,6,7) 
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CONVERSION BETWEEN CANONICAL 

FORMS: ”GOLDEN RULE” 

Function (extended SOP): list minterms of value 1 

 

  F(ABC) = 3(2,3,4,6) 

 

Negated function: list minterms of value 0 

  _  

  F(ABC) = 3(0,1,5,7) 

 

To obtain maxterms and extended POS form complement 

minterm indices  

   

  F(ABC) = 3(0,2,6,7) 
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SIMPLIFICATION/MINIMIZATION OF 

LOGIC FUNCTION 

 

 

Aim: To find the most economic or cheapest implementation  

 of the specified combinational network. 

Specification: text, truth table, Boolean expression, canonical 

 form, etc.  

What is economical cheap? Depends on the ”environment”  

 (hardware base). 

Discrete ICs (LSI/MSI, several gates in one IC): minimize  

 the number of ICs, or the number of gates,  

 or number of inputs (pins). 

Programmable logic: minimization of the resources  

 (logic cells) used. 

VLSI: minimize the chip area, time delays, etc. 

Simplest analysis: minimization of the number of inputs  

 (pin count). 
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SIMPLIFICATION GOALS 

Goal - minimize the cost of realizing a logic function. 

 

Cost measures and other considerations: 

 Number of gate inputs 

 Number of gates 

 Number of levels 

 Gate fan in and/or fan out 

 Interconnection complexity 

 Preventing hazards 

 

Two-level realizations: 

 Minimize the number of gates (terms in logic function) 

 Minimize the fan in (literals in logic function i.e.  

  inputs/pins in gates) 
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SIMPLIFICATION/MINIMIZATION 

In the past the main aim was to minimize the number of 

gate circuits implementing a given combinational circuit in 

order to decrease the number of electronic components. 

 

Nowadays the main motivation for the minimization of logic 

network is to decrease the logic resources in a PLD of 

FPGA, to decrease the area in VLSIs, and to increase the 

operational speed and reliability of the circuits. 

 

”The smallest number of failures are caused by those 

components which are NOT included in the network.” (Dr. 

Tóth  Mihály, professor emeritus, Székesfehérvár.)  

  

10 

LOGIC DESIGN:  

MINIMIZATION METHODS 

 

 

Intuition 
Quickly run out of steam 

 
Truth tables 
      Algebra, Quine’s method 
 
Minterm or maxterm 
      De Morgan 
 
Graphical 

Boolean cubes 
Karnaugh maps 

 
Computer algorithms 

Quine-McClusky (tabular) method 



2018.09.17. 

6 

11 

QUINE’S METHOD 

Quine’s method helps to perform the algebraic minimization 

in a systematic and (hopefully) error-free way.  

 

The method consists of factoring out the common factors 

from pairs of  minterms in such a way that in the 

parentheses only the sum of one variable and its 

complement remained, which sum is trivially 1.  

The process is applied to all possible pairs, then it is 

repeated with the new sets of terms, etc. 

 

The method thus generates all prime implicants, therefore in 

the second phase the essential prime implicants should be 

selected to obtain the minimal cover. 
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QUINE’S METHOD: DEMO 

                  _   _    _            _ _         _ 

F(A,B,C) = ABC + ABC + ABC + ABC 

(minterms:    2         3         4         6) 

Minterms I. II. III. 

        

       2 

 

       3 

 

       4 

 

       6 

     _   _ 

     ABC   

     _ 

     ABC   

       _ _ 

     ABC   

         _ 

     ABC   

          _ 

(2,3)  AB 

            _ 

(2,6)  BC 

            _ 

(4,6)  AC 

 

No entries 

All prime implicants are contained in column II. 
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QUINE’S METHOD: DEMO 

Prime implicant table 

2 3 4 6 

         _ 

(2,3) AB* 

 

X 

 

X 

           _ 

(2,6) BC 

 

X 

 

X 

           _ 

(4,6) AC* 

 

X 

 

X 

Identification of essential prime implicants to 

obtain the minimal cover 

                                            _         _ 

Minimal cover:  F(A,B,C) = AB + AC 

THE QUINE-MCCLUSKEY METHOD 

 

The Quine-McCluskey algorithm provides a systematic 

approach for finding the prime implicants and selecting a 

minimal cover.  

 

It is functionally equivalent to the Karnaugh mapping, but 

the tabular form makes it more efficient for use in computer 

algorithms, and also gives a deterministic way to check that 

the minimal form of a Boolean function has been reached. 

 

It is sometimes referred to as the tabulation method. 
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COMPLEXITY 

The tabular method is more practical than Karnaugh mapping 

when dealing with more than four variables, it has also a 

limited range of use since the runtime of the algorithm grows 

exponentially with the input size.  

 

For a function of n variables the upper bound on the number 

of prime implicants is 3n/n (i.e. 20 for n = 4, 48 for n =5, 121 

for n = 6, 312 for n = 7, etc.). If n = 32 there may be over 

6.5x1015 prime implicants. 

 

Functions with a large number of variables have to be 

optimized with potentially non-optimal heuristic methods. 
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ADJACENCY OF MINTERMS 

The minimization is based on finding and grouping the 

adjacent minterms, then terms, till the further not reducible 

prime implicants are arrived at. 

 

The necessary and sufficient condition of the adjacency of 

two minterms can be formulated in three statements, which 

should be fulfilled simultaneously. 

 

It is important the these three statements (conditions) can 

be formulated based only on the lower indexes of the 

minterms. 

 

Note: see Arató’s text for details. 
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ADJACENCY CONDITION FOR TWO 

MINTERMS NO. 1 

Two minterms are adjacent, if the difference between their 

decimal index is a power of two.  

    —            —      — —       —        —      — 

 6 0110  A B C D + A B C D  A C D 

 2 0010 

 4 = 22  

 

This is a necessary but not suffcient condition.  

 

Counterexample: it is fulfilled e.g. for minterms with index 2 

(i.e. 0010) and 4 (i.e. 0100), however they are not adjacent.  

18 

ADJACENCY CONDITION FOR TWO 

MINTERMS NO. 2 

Two minterms are adjacent, if their binary weights  (number 

of 1s) differ by 1. 

              _            _       _ _     _      _     _ 

 6 0110 (2) A B C D + A B C D  A C D 

 2 0010 (1) 

 4          (1) 

 

This is also necessary but not sufficient condition, because 

just this is the condition which is not fulfilled for minterms m2 

and m4 figuring in the previous counterexample.  
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ADJACENCY CONDITION FOR TWO 

MINTERMS NO. 3 
Two minterms are adjacent, if, the decimal index of the 

minterm with larger binary weight is also larger than the 

decimal index of the other minterm. 

             _        _     _ _     _      _     _    

 6 0110 2           A B C D + A B C D  A C D 

 2 0010 1 

 4          1 

    

   6  2 and 2  1 

 

This is also a necessary but in itself  not sufficient condition, 

because e.g. the minterms m7 and m9, for which the first two 

conditions are fullfilled, fail this 3rd condition.  

20 

QUINE-MCCLUSKEY ALGORITHM 

It can be shown that the simultaneous fulfillment of these 

three conditions is not only necessary but also sufficient for 

the establishment of the adjacency of two minterms. 

The Quine-McCluskey algorithm is based on this. 

 

The  Quine-McCluskey method involves the following two 

steps: 

 

1. Finding all prime implicants of the function. 

 

2. Use those prime implicants in a prime implicant chart to 

find the essential prime implicants of the function, as well 

as other prime implicants that are necessary to cover the 

function. 
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USING Q-M PROCEDURE WITH 

INCOMPLETELY SPECIFIED FUNCTIONS  

1.  Use minterms and don’t cares when generating 

prime implicants 

 

2.  Use only minterms when finding a minimal 

cover 
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THE PEOPLE 

Willard Van Orman Quine (1908-2000)  

Spent his entire career teaching philosophy and 

mathematics at Harvard University, his alma mater, 

where he held the Edgar Pierce Chair of Philosophy 

from 1956 to 1978. 

A computer program whose output is its source code is 

called a ”quine” named after him. 

 
Edward McCluskey 
McCluskey worked on electronic switching systems at 
the Bell Telephone Laboratories from 1955 to 1959 
1959: Princeton. Professor of Electrical Engineering and 
Director of the University Computer Center.  
1966: joined Stanford University,  

Currently Emeritus Professor of Electrical 
Engineering and Computer Science.  
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BOOLEAN CUBES 
An n-input Boolean function can be represented graphically 

as a “cube” in an n-dimensional Boolean space. 

24 

LOGIC MINIMIZATION USING BOOLEAN 

CUBES 
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BOOLEAN CUBE EXAMPLE: SOP 

F= 3((1,4,5,6) + X(7))  SOP looping 

26 

BOOLEAN CUBE EXAMPLE: POS 

F= 3((1,4,5,6) + X(7))  POS looping 
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The Karnaugh map:  

 

Construction, properties, and applications 

What everybody should know about the Karnaugh map…. 

28 

THE KARNAUGH MAP (K-MAP) 

Karnaugh maps (K-maps) - convenient tool for representing switching 

functions of up to six variables. In fact it is a practical rearrangement of 

the truth table based on the concept of adjacency. 

 

K-maps form the basis of useful heuristics for finding minimal SOP and 

POS representations. 

 

An n-variable K-map has 2n cells with each cell corresponding to a row of 

an n-variable truth table. 

 

K-map cells are labeled with the corresponding truth-table row. 

 

K-map cells are arranged such that adjacent cells correspond to truth 

rows that differ in only one bit position (logical adjacency).  

 

Switching functions are mapped (or plotted) by placing the function’s 

value (0,1,d) in each cell of the map. 
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THE KARNAUGH MAP (K-MAP) 

The Karnaugh map, known also as Veitch diagram is a graphic tool to 

facilitate management of Boolean expressions. 

 

It was invented in 1953 by Maurice Karnaugh, an engineer at Bell Labs, 

and is an improvement on the Veitch diagram (Edward W. Veitch in 1952). 

 

The Map Method for Synthesis of Combinational Logic Circuits, Trans. 

AIEE, pt. 1, 72 (9) 593-599, November 1953 

 

Normally, extensive calculations are required to obtain the minimal form of 

a Boolean function. 

 

Instead the Karnaugh maps make use of the human brain’s excellent 

pattern matching capability to arrive at the simplest expression. 

 

In addition, K-maps permit the rapid identification and elimination of 

potential race hazards, something that Boolean equations alone cannot do.  

 

30 

THE PEOPLE 

Maurice Karnaugh (1924-    ), American physicist. 

 

Yale University, BSc. in maths and physics (1949), MSc. 

(1950), PhD in physics (1952) (The Theory of Magnetic 

resonance and Lambda-Type Doubling in Nitric-Oxide). 

 

Bell Labs (1952-1966), IBM (1966-1989). 
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THE KARNAUGH MAP (CONT’D) 

Rectangular logic diagrams by Allan Marquand and Lewis 

Carrol (of Alice in Wonderland fame) were the forerunners of a 

modern form  known today as Karnaugh maps. 

 

Since 1950 Karnaugh maps quickly became one of the 

mainstays of the digital logic and computer designer’s tool-

chest. 

 

Basic references: 

Edward W. Veitch, A chart method for simplifying truth 

functions, May 1952, Proc. Assoc. for Computing Machinery, 

Pittsburgh  

Maurice Karnaugh, The map method for synthesis of 

combinational logic circuits, Trans. AIEE, pt. I, 72(9), 553-599, 

November 1953. 
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KARNAUGH MAP – GENERALIZATION 

OF THE VENN DIAGRAM 

A

B

C

D

B

D

C

B

A

D

A

B

D

CC

A

A

B

C

D

The opposite sides are toroidally connected! 
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FOUR VARIABLE K-MAP ON TOROID 

34 

ON VENN DIAGRAMS 

Venn diagrams are illustrations in the branch of mathematics  known 

as set theory. They show the mathematical or logical relationships 

between different groups of things (sets). A Venn diagram shows all the 

possible logical relations between sets. 

 

John Venn (1834-1923) was a British philosopher and mathematician 

who introduced the Venn diagram in 1881. 

 

A stained glass window in Caius College, Cambridge, where he studied 

and spent most of his life, commemorates John Venn and represents a 

Venn diagram. 

 

Similar and related diagrams: 

Euler diagrams, Johnston diagrams, Karnaugh maps, Peirce diagrams,  

Edward’s Venn diagrams. 
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EXAMPLES OF COVERING (LOOPING) 

ON 4-VARIABLE KARNAUGH MAP 

A

B

C

D

AB

AD

1 1

1 1

1 1 1 1 A

B

C

D

1 1

1 1 1

1 1

BC

AD

1 1

1 1

BD

A

B

C

D

1 1

11

BD B

A

B

C

D

1 1 1 1

1

1

11 1 1

CD

Note: race (static) hazard (top 

left), symmetric function (down 

left) 

A four-variable map has 16 cells. The four-variable map is 

continuous from the left edge to the right edge and is also 

continuous from the top edge to the bottom edge. 

36 

KARNAUGH MAP: PRIME IMPLICANTS   

   

 

Essential prime implicants 

Non-essential prime implicants 

Classification is conditional 
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PRIME IMPLICANTS TABLE  

1 3 6 7 8 9 12 13 14 15 

a    6, 7,14,15 x x x x 

 b    8,9,12,13 x x x x 

 c  12,13,14,15 x x x x 

 d     1,3 x x 

 e      1,9 x x 

 f        3,7 x x 

Essential PIs: a and b cover 6,7,8,9,12,13,14,15 

 

Remaining 1 and 3 can be covered by PI d. 
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IN PLANE (REFLECTION) KARNAUGH MAP  

FOR 5 VARIABLES 
Adjacency: 

 

9  0 1 0 0 1 

130 1 1 0 1 

 

Reflection 

symmetry  

For a 3-dimensional arrangement of the 5-variable K-map 

and looping on it cf. Zsom Vol. 1, p.129 
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ADJACENCY FOR 5-VARIABLES 

(REFLECTION MAP) 

There are several different formats of a 5-variable K map, the 

two most popular ones are the reflection map and overlay map.  

The above version of the five-variable Karnaugh map, is a Gray 

code map or reflection map. The top of the map is numbered in 

full Gray code. The Gray code reflects about the middle of the 

code.  
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KARNAUGH MAPS: FIVE VARIABLES 

Minterm assignment in five-variable reflection Karnaugh map 

Minterm assignment in five-variable overlay Karnaugh Map 
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KARNAUGH MAP FOR 6 VARIABLES 

Adjacency: 

 

0 0 1 0 0 1 

0 0 1 1 0 1 

1 0 1 0 0 1 

1 0 1 1 0 1 

42 

ADJACENCY FOR 6-VARIABLES 
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KARNAUGH MAP VARIATIONS  

FOR 6-VARIABLES 

Three dimensional arrangement of 6 variable K map. 

(For an example of looping cf. Zsom Vol. 1. p. 129.) 
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Further applications of Karnaugh maps: 

 

Don’t care terms, symmetric functions, 

analysis of combinational circuits,  

race hazards, K map softwares  
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DON’T CARE TERMS 

Don’t care terms in the truth table: 

1. The given input combination cannot occur. 

2. The given input combination can occur, but the logic 

network following the output does not consider it. 

 

Representative example: BCD-to-seven segment display 

decoder/driver. 

 

Optimal covers utilize don’t care terms. 

 

Don’t care terms exist when planning a combinational circuit, 

but NEVER when a realized CC is analyzed! 

46 

FIXING THE VALUE(S) OF THE DON’T 

CARE TERMS 

1 1 1 1 

- 

0 

- 

1 

1 1 

0   0 

0 

1 

1 

1 

C 

B 

D 

A 

The yellow coded cell is 

assigned a value of 1 

when the sum of products 

(SOP) form is evaluated, 

and a value of 0 when the 

product of sums (POS) 

form is evaluated!  
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OPTIMIZED SOP AND POS FORMS 

 

          —     —                   — 
  FS = B + C D + A C D 

 

                —  — 
  FP = (A+B)(B+C+D)(B+C+D) 

 
Accounting for the inverters necessary to produce the 

negated variables, the pin count for the SOP form is 11, 

and for the POS form is 14. 
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SYMMETRIC BOOLEAN FUNCTIONS 

If the variables of a function can be interchanged with each 

other (permuted) without changing the value of the function, 

the its called symmetric function. 

 

Examples of symmetric function: XOR, XNOR, sum function 

of the full adder, Si = AiBiCi-1, etc. 

 

E.g. for n=3 (A,B,C) if A and B can be interchanged with each 

other, but neither of them with C, the function is partially 

symmetric with respect of the pair of variables, A and B. 

 

The symmetry therefore can be full or partial. 
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EXCLUSIVE OR LOGIC 

The symmetric functions have special characteristics, like 

they form a ”chessboard” pattern on the Karnaugh map (at 

least partially), and they can be simplified by using XOR 

functions as functional elements. 

 

Reduction of a function to XOR form is characterized by a 

Karnaugh map where the 1s are diagonally opposite to each 

other. 

 

In the general context of minimization of Boolean functions 

XOR gates can, for certain problems, provide a more 

economic implementation than by using other logic gates.  

 

Two examples are the 1-bit full adder, and the binary-to-Gray 

code conversion. 
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UTILIZATION OF SYMMETRY: EXAMPLE 

AND-OR (NAND-NAND) implementation: 8 pins 3 gates  

 

Implementation using XOR: 4 pins 2 gates 

 

Symmetry: partial, with respect to A and B 

XOR, XNOR 

Look for “checkerboard” 

squares 

Depends whether 

XOR/XNOR gates 

available 
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UTILIZATION OF SYMMETRY: EXAMPLE 

AND-OR (NAND-NAND) implementation: 8 pins 3 gates  

 

Implementation using XOR: 4 pins 2 gates 

 

Symmetry: partial, with respect to A and B 

 

         

= C (A  B) 

52 

EXAMPLE: Si (SUM) FUNCTION  

OF THE 1 BIT FULL ADDER 

D
i

0 1

1 0

1 0

0 1

0 1

2 3

4 5

6 7

A
i

B
i

C
i-1

A
i

B
i

C
i-1

i

(4) (2) (1)

0

1

2

3

4

5

6

7

0

0

0
0

1
1
1

1

0

0

0
0

1
1

1

1

0

0

0

1

1

1

0

1

D
i

1

0

0
1

1

1

0
0

„chessboard pattern” 

symmetric function 

Sum function   Si = Ai  Bi  Ci-1  

 Si 

 Si 
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EXAMPLE: PARTIALLY SYMMETRIC 

FUNCTIONS 

Pin counts: 

 AND/OR implementation (2 level):  11 

 AND/OR/XOR implementation (3 level):   8 

Chessboard pattern (right half of the map) 
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ANALYSIS OF COMBINATIONAL 

CIRCUITS 
The change sequence of the input states and variables can 

be followed using the K map. 

     Loops in the K map  

     corresponding to the  

     AND gates. 

A   B   C   D 

0   1   1   0 

0   1   1   1 

1  1   1   1 

1   0   1   1 

1   0   1   0 

Control handover 

between AND gates: 

static race hazards 
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STATE SEQUENCE 

55 

The state sequence and the time diagram of input variables  

CONTROL HANDOVER BETWEEN 

GATES: HAZARDS 

56 

Loops in the K map corresponding to the AND gates 
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HAZARDS 

A hazard or glitch is a fault in the logic system due to a 

change at the input. A static hazard is when the output of a 

logic circuit momentarily changes when its final value is the 

same as its value before the hazard (when the output is 

"trying" to remain the same, it jumps once, then settles 

down). A dynamic hazard (or oscillation hazard) is where a 

logic circuit will momentarily change back to its original value 

while changing to a new value.  

 

The cause of hazards is the timing delay of different 

components in the circuit. The resulting glitches in the circuit 

may or may not induce additional problems - other than 

increased issues due to switching noise. It is good design 

practice to design circuits to minimize these hazards. 

58 

STATIC HAZARD: EXAMPLE 

The brief pulse or glitch in the 

output is caused by the 

difference in the propagation 

delay of the signals through 

the gates.  

Measured  width at 50% 

level:  app. 40 nsec, series 

74 one gate average delay 

app. 13 nsec.   

(student’s measurement)    

1 cm = 100 nsec 
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STATIC HAZARD IN A MULTIPLEXER 

Example of static hazard in a multiplexer 

60 

STATIC HAZARD PREVENTION 

Multiplexer: Karnaugh map and static hazard prevention logic 
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STATIC HAZARDS 

There are two types of static hazards: a low-going glitch (or 

static one hazard) is where the high output transitions to a 

low and back high (1-0-1) and a high-going glitch (or static 

zero hazard) is where the low output transitions to a high and 

back low (0-1-0). 

62 

STATIC HAZARDS 

 

Static 0 hazards occur in product-of sums implementations, 

but do not occur in sum-of-products implementations. Static 1 

hazards occur in sum-of-products implementations, but do 

not occur in product-of sums implementations. 

 

Adding logic redundancy using a Karnaugh map is the 

easiest way to eliminate static hazards. 

 

Static hazards can be eliminated  using a sum-of-product s 

implementation containing every prime implicant. 
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STATIC HAZARDS 

1 1 

1 

 1  1 

1 

1 

1 

C 

B 

D 

A 

K maps are useful for 

detecting and eliminating 

statc hazards.             

 

          _ 

An additional term BC     

would eliminate the 

potential static hazards, 

bridging between the green 

and blue output state or 

blue and red output states. 

64 

ELIMINATION OF STATIC HAZARDS 

1 1 

1 

 1  1 

1 

1 

1 

C 

B 

D 

A 

                _  

An additional term BC      

eliminates the potential 

static hazards, bridging 

between the green and 

blue  output state or blue 

and red output states. 

The term is redundant in 

terms of the logic state of 

the system, but such 

redundant terms are often 

needed to assure race-free 

dynamic performance. 
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STATIC HAZARD IN  NON-COMPLETELY 

DETERMINED LOGIC CIRCUITS 

If the logic network to be designed is not completely 

determmined i.e. it contains don’t care terms than the way to 

find the simplest  (minimal) two level hazard-free network is 

much less systematic. 

 

STATIC HAZARD IN  NON-COMPLETELY 

DETERMINED LOGIC CIRCUITS 

Given a logic function on the Karnaugh table (dash 

denotes don’t care terms).  

1. Find and its simplest two-level hazard free disjunctive 

(SOP) realization. The input combinations corresponding 

to the don’t care terms cannot occur physically. 

2. Find its simplest two-level hazard free disjunctive (SOP) 

realization, if the realized circuit cannot contain static 

hazard! 
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STATIC HAZARD IN  NON-COMPLETELY 

DETERMINED LOGIC CIRCUITS 

Solution case 1 Solution case 2 

68 

DYNAMIC HAZARD 

A dynamic hazard (or oscillation hazard) is where a logic 

circuit will momentarily change back to its original value while 

changing to a new value.  

In: 10, out 0 1, by logic  

However out: 0 1 0 1). 
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DYNAMIC HAZARD 

Dynamic hazards can only occur in three-level networks or 

above, if  on any of the levels a static hazard is present. 

 

Therefore eliminating the possible static hazards on each 

individual level, the dynamic hazard is also eliminated 

automatically.  
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FUNCTIONAL HAZARD  

B C 

A 1 1 1 

1 

0 

0 0 0 

B C 

A 1 1 1 

1 

0 

0 0 0 

B C 

A 1 1 1 

1 

0 

0 0 0 

11 101 111 

It can occur if two or more  input variables change 

simultaneously. 

E.g. for the transition 101110 two different time sequence 

is possible, therefore on the output an unwanted 0 state can 

occur for a short time.  
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FREVISION QUESTIONS 

1. Describe the Quine’s algebraic minimization method. 

 

2. Describe the Quine-McCluskey algorithm. 

 

3. Define and explain the following concepts: static 

hazard, dynamic hazard and functional hazard. 

 

4. Describe and explain the method of eliminating dtatic 

hazards in a combinational circuit. 
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PROBLEMS AND EXERCISES 

1. Given the three-variable logic function  

   

  F(A,B,C) = 3(0,2,3,4)  

   

Find its minimized product-of-sums (POS) form.   

 

2. Using the Quine-McCluskey method  

    a. find all prime implicants of the function below,  

    b. determine the minimal cover.  

   

 F(A, B, C, D) = 4(0, 4, 5, 6, 7, 9, 11, 13, 14)  

   

ANS/HINT: 

Six prime implicants be found. Four of them are essential prime 

implicants, and any one of the remaining two prime implicants added 

will result in minimal cover.  

Therefore two equivalent  minimal circuits exist. 
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PROBLEMS AND EXERCISES 

3. Design a logic circuit with two inputs, A and B, and two outputs, X and Y, 

so that it operates as follows: 

(1) X and Y are both HIGH as long as A is HIGH, regardless of the level of 

B. 

(2) If A pulses LOW, the LOW will appear at X if B=0 or at Y if B=1. 

 

4. Implement the logic function shown below:  

(a) using a two level minimal system (minimal cover),  

(b) without static hazard.  

   

F(A,B,C,D,E) = 5 (2,6,8,10,12,14,17,19,21,23,26,27,30,31)  

   

(HINT: the minimized SOP form contains five 4-cube (i.e. 3-variable) loops. 

Two additional product terms are necessary to eliminate the static race 

hazards.)  

Supplementary exercise: Repeat the minimization using the Quine-

McCluskey algorithm too.  
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  END OF LECTURE 
 

 

 

 
Appendix: 1. Quine-McCluskey demo 

        2. 6-variable Karnaugh map demo 
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QUINE-MCCLUSKEY DEMO 

F(A,B,C) = 3(1,2,3,6,7) 

Group and arrange minterms in an implicant table according 

to their Hamming weight. Neighbours can differ only in one 

place. Minterms in group 2 can have neighbours only from 

group 1 or 3. 

m1   001 HW = 1  (1) m1, m2 

m2   010           1  (2)  m3, m6 

m3   011           2  (3) m7 

m6   110           2 

m7   111                  3 

IMPLICANT TABLE 

Size Minterms 

m(i) 

One-cube 

m(i,j) 

Two-cube 

m(i,j,k,l) 

1 m1 

m2 

1,3 (2) * 

2,3 (1) 

2,6 (4) 

2,3,6,7 (1,4) * 

2 m3 

m6 

3,7 (4) 

6,7 (1) 

3 m7 

All terms should be accounted for. Terms which cannot be 

merged further are the prime implicants (*). 

Merge terms from adjacent groups with 

decimal index differing by 1, 2, 4, 8, etc. Mark 

terms used. Terms can be used several times. 
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COVERING TABLE 

Prime implicants Minterms 

 1    2    3    6    7 

(2,3,6,7) *        X   X    X   X 

(1,3)*  X         X 

Construct a prime implicant or covering table as shown.  

The minterm m2 occurs only in one column, therefore 

m(2,3,6,7) is an essential prime implicant. This  takes care of 

m3, m6, and m7 too. Continue … m(1,3) is also necessary 

because of m1. The result is:                     

             _   

 F(A,B,C) = m(2,3,6,7) + m(1,3) = B + A C 

         

                                  X 1 X          0 X 1            

                   

78 

EXAMPLE: MINIMIZATION ON THE  

SIX-VARIABLE KARNAUGH MAP 

Function to be minimized (19 minterms): 

 

 

  F(A,B,C,D,E,F) = 

 

6 (0,2,6,9,14,18,21,23,25,27,32,34,41,49,53,55,57,61,62) 
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EXAMPLE: LOOPING FOR SIX VARIABLES 

1 1 1 

1 1 

1 

1 1 

1 1 

1 1 1 

1 

1 

1 1 

1 1 
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EXAMPLE: LOOPING FOR SIX 

VARIABLES 

Bmin Boolean minimizer 
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Quine-McCluskey 

minimization 

82 

PRIME IMPLICANT TABLE 


