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SYNTHESIS USING LOGIC GATES 

The traditional process of logic synthesis is based on the 

application of logic gates. 

 

Its more modern variant makes use of programmable logic 

devices too. 

 

However in many case it is more advantageous to use a 

logic synthesis procedure based on the application of logic 

functional blocks. 

 

 

IMPLEMENTING COMBINATIONAL LOGIC 

The different steps involved in the design of a combinational 

logic circuit are as follows: 

 

1. Statement of the problem. 

2. Identification of input and output variables. 

3. Expressing the relationship between the input and output  

 variables. 

4. Construction of a truth table to meet input–output  

 requirements. 

5. Writing Boolean expressions for various output variables 

 in terms of input variables. 

6. Minimization of Boolean expressions. 

7. Implementation of minimized Boolean expressions. 



2018.09.24. 

3 

IMPLEMENTING COMBINATIONAL LOGIC 

These different steps are self-explanatory. One or two points, 

however, are worth mentioning here.  

 

There are various simplification techniques available for 

minimizing Boolean expressions, which have been discussed 

in the previously. These include the use of theorems and 

identities, Karnaugh mapping, the Quine–McCluskey 

tabulation method and so on. Also, there are various possible 

minimized forms of Boolean expressions.  

 

The following guidelines should be followed while choosing 

the preferred form for hardware implementation: 

IMPLEMENTING COMBINATIONAL 

LOGIC 
1. The implementation should have the minimum number  

 of gates, with the gates used having the minimum  

 number of inputs. 

 

2. There should be a minimum number of interconnections,  

 and the propagation time should be the shortest. 

  

3. Limitation on the driving capability of the gates should  

 not be ignored. 

 

It is difficult to generalize as to what constitutes an 

acceptable simplified Boolean expression. The importance of 

each of the above-mentioned aspects is governed by the 

nature of application. 
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  Problem statement   

    Truth Table     

     Minimized      

 PoS form     

Elimination of hazards 

Impementation: 

 NAND gates  

 Sum of minterms  
form 

   Minterm table   

 Product of maxterms 
form 

   Maxterm table   

     Minimized        

SoP form 

Elimination of hazards 

Implementation: 

  NOR gates  

Implementation: 

NOT-AND-OR 

Flow diagram of logic synthesis procedure using gates 

IMPLEMENTATION OPTIONS 

Ready-made catalog-order (modular) devices (gates, 

functional blocks, etc.) 

 

Custom-design devices 

 

Gate-array devices 

 

Programmable logic devices (PLD), e.g. programmable logic 

array (PLA), programmable array logic (PAL), etc. 

 

Table look-up (ROM) 

 

Microcomputer 
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PROGRAMMABLE ARRAY LOGIC 

16-input, 8-otput PAL (P16H8) 

PROGRAMMABLE SEQUENTIAL ARRAY 

PSA = PLA + registers (flip-flops) 
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EXAMPLE: CODE CONVERTERS WITH ROM 

 

 

 

Various codes are used in digital technics. For the solution of 

a given task a certain type of code might be the most 

appropriate, however for an other different task an other 

code type might be more advantageous. 

E. g. in a digital position or angle sensor  it is advantageous 

to use the Gray code. However the treating of measurement 

data and performing arithmetics would be rather complicated 

in Gray code, for this the binary code is the best choice. 

The various BCD type codes play an important role in the 

information exchange between the digital systems and 

human beings, however inside the system itself the use of 

such code is disadvantageous because of memory capacity 

usage, and more complicated arithmetics. 

For this reason code conversion is a commonly occurring 

task in various digital systems. 
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ROM APPLICATIONS: CODE 

CONVERSIONS 

 

 

 

One important application of ROMs in combinational logic is 

the code conversion.  

 

n-bit code  m-bit code  necessary memory capacity:  

m x 2n. 

 

 Practical examples: 

 

8-bit binary code   8-bit Gray code: 256x8 ROM. 

 

13-bit binary code  4 tetrad BCD code: 

Two 8-kbyte capacity EPROM, 1s, and 10s, and 100s and 

1000s respectively, (13 bit: 0-8191). 
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CODE CONVERSION USING ROM 

A0    D0 

…   ... 

 …   … 

A12   D7 

A0    D0 

…   ... 

 …   … 

A12   D7 

BCD outputs 

 

1s and 10s 

 

 

 

 

100s and 1000s 

 

Binary inputs 

 

 

 

B0 … B12 

13-bit binary code to 4 tetrad BCD code converter 
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ROM BASED LOGIC: MULTIPLIER 

 X   Y     Z 
 
0*0 00  00 0000 
0*1 00  01 0000 
0*2 00  10 0000 
0*3 00  11 0000 
1*1 01  01 0001 
1*2 01  10        0010 
1*3 01  11 0011 
2*0 10  00 0000 
2*1 10  01 0010 
2*2 10  10 0100 
2*3 10  11 0110 
3*0 11  00 0000 
3*1 11  01 0011 
3*2 11  10 0110 
3*3 11  11 1001 

ROM 

16x 4bit 

Z 

X 

Y 

Fast, simple, cheap,  

Can generate any function 

(look-up-table, LUT) 

 

LUT based logic is used in 

several types of FPGAs.  
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8x8 BIT COMBINATIONAL MULTIPLIER  

4x4 bit partial products are generated by four 256x8 bit ROMs 

LUT(ROM) BASED SYSTEM LOGIC 

BLOCK 

In general, a logic block (CLB or LAB) consists of a few 

logical cells (called ALM, LE, Slice etc). A typical cell 

consists of a 4-input Lookup table (LUT), a Full adder (FA) 

and a D-type flip-flop. The LUT are in this figure split into 

two 3-input LUTs. In normal mode those are combined into 

a 4-input LUT through the left mux.  
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MINIMIZATION AND IMPLEMENTATION 

OF MULTIPLE OUTPUT NETWORKS: 

PRINCIPLE AND DEMO EXAMPLE 

b 

a 

a,b 

a 

 b   

C 

B 

D 

A 

Fa = 4(5,12,13) 

 

Fb = 4(3,5,7) 

 

”Elementary” implementation: 

four 3-input AND gates and 

two 2-input OR gates 

 

Cost function (pin count): 

4x3 + 2x2 = 16 

Gate count: 6 

18 

MINIMIZATION AN IMPLEMENTATION OF 

MULTIPLE OUTPUT NETWORKS 

b 

a 

a,b 

a 

 b   

C 

B 

D 

A 

Fa = 4(5,12,13) 

 

Fb = 4(3,5,7) 
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MINIMIZATION AN IMPLEMENTATION OF 

MULTIPLE OUTPUT NETWORKS 

19 

& & & 

1 1 

     Fa                                                  Fb 

             _                _         _                      _ 

A    B    C                A   B   C   D                A   C    D 

Pin count: 14 

Gate count: 5 

MINIMIZATION AN IMPLEMENTATION OF 

MULTIPLE OUTPUT NETWORKS 

In this example the independent minimization of the two 

outputs of the pin count is 16, the common minimization 

yields 14 pins.  The gate counts were 6 and 5 respectively. 

 

The common minimization is generally noticeably optimal, in 

this case the pin number decreased by 12.5 percent. 

 

The common implicant can be found by graphical or by 

numerical methods. For more then 3 or for outputs the 

transparency of the graphical method is strongly reduced, in 

such cases e.g. the appropriately modified Quine-McCluskey  

algorithm can be used. 
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EXAMPLE: MINIMIZATION OF THREE 

OUTPUT LOGIC FUNCTION 

21 

Determine the simplest conceptual two-level AND-OR 

logic diagram of the three output logic network: 

  

  Fa = 4(0,1,5,6,7,13) 

  

  Fb = 4(0,1,5,10-15) 

  

  Fc = 4(0,1,8-11,14,15) 

  

The common prime implicants of Fa and Fb are the prime 

implicants of the product function Fab = FaFb, etc. 

COMMON (PRIME) IMPLICANTS 

22 

Product functions (pairs): 

  

 Fa = 4(0,1,5,6,7,13) 

  

 Fb = 4(0,1,5,10-15) 

 

 Fc = 4(0,1,8-11,14,15) 

 

Fab = FaFb = 4(0,1,5,13) = m(0,1) + m(5,13) 

 

Fbc = FbFc = 4(0,1,10,11,14,15) = (0,1) + m(10,11,14,15) 

  

Fca = FcFa = 4(0,1) = m(0,1) 
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RESULT OF MINIMIZATION (1) 

23 

Principle: the common prime implicants occurring in more 

outputs are implemented only once.  

Fa,Fb,Fc:  /A /B /C m(0,1) 

Fa,Fb:  B /C D  m(5,13) 

Fa,Fb:  A C  m(10,11,14,15) 

24 

BCD to 7–segment 
control signal 

decoder 

c0  c1  c2  c3  c4  c5  c6 

A   B   C   D 

ANOTHER EXAMPLE: BCD TO  

7-SEGMENT DISPLAY CONTROLLER 

• Understanding the problem 

– Input is a 4 bit BCD digit (A, B, C, D) 

– Output is the control signals for the display (7 outputs 

C0 – C6) 

• Block diagram c1 c5 

c2 c4 
c6 

c0 

c3 
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A B C D C0 C1 C2 C3 C4 C5 C6 

0 0 0 0 1 1 1 1 1 1 0 

0 0 0 1 0 1 1 0 0 0 0 

0 0 1 0 1 1 0 1 1 0 1 

0 0 1 1 1 1 1 1 0 0 1 

0 1 0 0 0 1 1 0 0 1 1 

0 1 0 1 1 0 1 1 0 1 1 

0 1 1 0 1 0 1 1 1 1 1 

0 1 1 1 1 1 1 0 0 0 0 

1 0 0 0 1 1 1 1 1 1 1 

1 0 0 1 1 1 1 0 0 1 1 

1 0 1 – – – – – – – – 

1 1 – – – – – – – – – 

FORMALIZE THE PROBLEM 

• Truth table 

– Show don't cares 

• Choose implementation 

target 

– If ROM, we are done 

– Don't cares imply PAL/PLA 

may be attractive 

• Follow implementation 

procedure 

– Minimization using K-maps 

26 

C0 = A + B D + C + B' D' 
C1 = C' D' + C D + B' 
C2 = B + C' + D 
C3 = B' D' + C D' + B C' D + B' C 
C4 = B' D' + C D' 
C5 = A + C' D' + B D' + B C' 
C6 = A + C D' + B C' + B' C 

IMPLEMENTATION AS MINIMIZED  

SUM-OF-PRODUCTS (SOP) 

• 15 unique product terms when minimized individually 

1    0    X    1 

0    1    X    1  

1    1    X    X 

1    1    X    X  

D 

A 

B 

C 

1    1    X    1 

1    0    X    1  

1    1    X    X 

1    0    X    X  

D 

A 

B 

C 

0    1    X    1 

0    1    X    1  

1    0    X    X 

1    1    X    X  

D 

A 

B 

C 

1    1    X    1 

1    1    X    1  

1    1    X    X 

0    1    X    X  

D 

A 

B 

C 

1    0    X    1 

0    1    X    0  

1    0    X    X 

1    1    X    X  

D 

A 

B 

C 

1    0    X    1 

0    0    X    0  

0    0    X    X 

1    1    X    X  

D 

A 

B 

C 

1    1    X    1 

0    1    X    1  

0    0    X    X 

0    1    X    X  

D 

A 

B 

C 
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C0 = B C' D + C D + B' D' + B C D' + A 
C1 = B' D + C' D' + C D + B' D' 
C2 = B' D + B C' D + C' D' + C D + B C D' 
C3 = B C' D + B' D + B' D' + B C D' 
C4 = B' D' + B C D' 
C5 = B C' D + C' D' + A + B C D' 
C6 = B' C + B C' + B C D' + A 

C0 = A + B D + C + B' D' 
C1 = C' D' + C D + B' 
C2 = B + C' + D 
C3 = B' D' + C D' + B C' D + B' C 
C4 = B' D' + C D' 
C5 = A + C' D' + B D' + B C' 
C6 = A + C D' + B C' + B' C 

C2 

IMPLEMENTATION AS MINIMIZED SOP 

(CONT’D) 

• Can do better 

– 9 unique product terms (instead of 15)  

– Share terms among outputs 

– Each output not necessarily in minimized form 

1    1    X    1 

1    1    X    1  

1    1    X    X 

0    1    X    X  

D 

A 

B 

C 

1    1    X    1 

1    1    X    1  

1    1    X    X 

0    1    X    X  

D 

A 

B 

C 

C2 

28 

C0 = B C' D + C D + B' D' + B C D' + A 
C1 = B' D + C' D' + C D + B' D' 
C2 = B' D + B C' D + C' D' + C D + B C D' 
C3 = B C' D + B' D + B' D' + B C D' 
C4 = B' D' + B C D' 
C5 = B C' D + C' D' + A + B C D' 
C6 = B' C + B C' + B C D' + A 

C0 = A + B D + C + B' D' 
C1 = C' D' + C D + B' 
C2 = B + C' + D 
C3 = B' D' + C D' + B C' D + B' C 
C4 = B' D' + C D' 
C5 = A + C' D' + B D' + B C' 
C6 = A + C D' + B C' + B' C 

C2 

IMPLEMENTATION AS MINIMIZED SOP 

(CONT’D) 

• Can do better 

– 9 unique product terms (instead of 15)  

– Share terms among outputs 

– Each output not necessarily in minimized form 

1    1    X    1 

1    1    X    1  

1    1    X    X 

0    1    X    X  

D 

A 

B 

C 

1    1    X    1 

1    1    X    1  

1    1    X    X 

0    1    X    X  

D 

A 

B 

C 

C2 
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BC' 

B'C 

B'D 

BC'D 

C'D' 

CD 

B'D' 

A 

BCD' 

A B C D 

C0  C1  C2  C3  C4  C5  C6  C7 

PLA IMPLEMENTATION 

30 

AND-OR-XOR LOGIC DEMO EXAMPLE: 

BCD-TO-GLIXON CODE CONVERSION 

0 1 2 3 

7 

8 

6 

9 

 5  4 

C 

B 

D 

A 

Design a (normal) 

BCD/Glixon code 

converter. The illegal code 

words cannot be present at 

the inputs. 
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EXAMPLE (EXCLUSIVE-OR LOGIC): 

BCD-TO-GLIXON CODE CONVERTER 

31 

The Glixon code is a one-step BCD code (the Hamming 

distance  is 1).  The code words from 0 to 9 are  

 

0000(0) 0001(1)  0011(2) 0010(3)  0110(4) 

0111(5) 0101(6) 0100(7) 1100(8) 1000(9) 

 

Normal BCD code:    ABCD (A is the MSB) 

Glixon code:    E3, E2, E1, E0 (E3 is the MSB). 

 

  E3 = Σ4(8,9)X(10-15) 

  E2 = Σ4(4-8)X(10-15) 

  E1 = Σ4(2-5)X(10-15) 

  E0 = Σ4(1,2,5,6)X(10-15) 

MINIMIZED TWO LEVEL AND-OR CIRCUIT 

32 

& 

& 

& 

& 

& 

1 

1 

1 

E3 = A 

                  _ 

E2 = B + A D 

 

            _     _ 

E1 = B C + B C 

 

            _     _ _ 

E0 = C D + A C D 

 

Pin count 18  

Gate count 8  

 

(plus 4 inverters at 

the inputs 
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AND-OR-EXCLUSIVE-OR LOGIC 

IMPLEMENTATION 

33 

Using XOR gates in implementing (partially) symmetric 

logic functions make possible to obtain more economical 

solutions than using standard optimized two-level AND-

OR or OR-AND circuits. 

 

Here this approach can be applied to E1 and E0. 

 

Full or partial symmetry is evident on the Karnaugh map 

by noting the chessboard patterns. 

34 

AND-OR-XOR LOGIC: E1 

1 1 

1 

X 

1 

X 

  

    

X 

X 

X 

X 

C 

B 

D 

A 

            _        _ 

E1 = B C + B C 

 

(three gates) 

 

E1 = B  C 

 

One gate instead of 

three! 
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AND-OR-XOR LOGIC: E0 

1 1 

X 

1 

X 

  

   1 

X 

X 

X 

X 

C 

B 

D 

A 

             _     _ _ 

E0 =  C D + A C D 

 

(three gates) 

         _ 

E0 = A (C  D) 

 

Two gates instead of 

three! 

 

AND-OR-XOR LOGIC IMPLEMENTATION 

36 

& 

=1 

=1 

1 

& 

E3 = A 

                  _ 

E2 = B + A D 

 

E1 = B  C  

 

         _     

E0 = A (C  D) 

 

Pin count 11 

Gate count 5  

Additional benefit: 2 inverters instead of 4 at the input! 
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2-LEVEL AND/OR VERSUS AND/OR/XOR 

Comparison of the two approaches (including input 

inverters where necessary: 

 

  two-level AND/OR  (three-level) AND/ORXOR 

 

Pin count  18   11 

 

Gate count  8   5 

 

Input inverters 4   2 

COMBINATIONAL LOGIC DESIGN 

USING FUNCTIONAL BLOCKS 

The traditional process of logic synthesis is based on the 

application of logic gates. 

 

However in many case it is more advantageous to use a 

logic synthesis procedure based on the application of logic 

functional blocks. 

 

Demo examples: 
Functional units (multiplexer, decoder) as building blocks   
Logical function unit 
Mux based shifter 
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DIGITAL SYNTHESIS: BUILDING BLOCKS 

Lower level of abstraction: gates 

 

Higher hierarchy: functional building blocks 

 

 Encoders, decoders 

 Multiplexers, demultiplexers 

 Registers, memories 

 Comparators 

 Adders, etc. (binary arithmetic blocks) 

 

Programmable logic devices  

 

Technological realization: SSI/MSI circuits  

FAMILY TREE OF FUNCTIONAL BLOCKS 

       functional blocks    

 

  combinational sequential 

 

 exor     register  

 encoder, decoder   latch 

 mux, demux    counter 

 comparator    shift register 

 adder     serial arithmetics 

 ALU     etc. 

 code converters    

 tri state buffer 

 etc. 
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DIGITAL COMPONENTS 

High level digital circuit designs are normally made using collections of 

logic gates referred to as components, rather than using individual logic 

gates. 

 

Levels of integration (numbers of gates) in an integrated circuit (IC): 

 

 Small scale integration (SSI): about 10 gates.  

 Medium scale integration (MSI): 10 to 100 gates. 

 Large scale integration (LSI): 100-1,000 logic gates. 

 Very large scale integration (VLSI): 1,000-upward. 

 Ultra large scale integration (ULSI): 10,000-upward. 

 Giga large scale Integration (GLSI): 100, 000 upward. 

 Ridiculously (?) large scale integration (RLSI): 1,000,000 upward. 

 

These levels are approximate, but the distinctions are useful in 

comparing the relative complexity of circuits. 

What we need to know about an MSI 

circuit? 
• Function: what it does 

• Truth-table: input-output 

• Logic gate diagram: how it does it 

• Packaging (module pin-out): how to build it 

• Dynamic behavior (timing diagram) 

• Applications: where to use it 

 

Common MSI circuits: 

 programmable logic devices (PLDs) 

 encoder, decoder, exor, comparator, 
mux, demux, adder, subtractor, 

    arithmetic circuits (adders, multipliers)  

    Arithmetic and Logic Unit (ALU) 
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• Any combinational circuit can be constructed using 
decoders and OR gates!  
 

• Example: Implement a full adder circuit with a decoder and 
two OR gates. 
 

• Recall full adder equations, and let X, Y, and Z be the 
inputs: 
 
– S(X,Y,Z) = X+Y+Z =  m(1,2,4,7)  
– C (X,Y,Z) = m(3, 5, 6, 7). 

 
• Since there are 3 inputs and a total of 8 minterms, we need 

a 3-to-8 decoder. 
 

DECODER APPLICATION: IMPLEMENTING 

BOOLEAN FUNCTIONS USING DECODERS 

IMPLEMENTING A BINARY ADDER 

USING A DECODER  

S(X,Y,Z) = SUM m(1,2,4,7) 
 

C(X,Y,Z) = SUM m(3,5,6,7) 
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MULTIPLEXER AS AN UNIVERSAL 

COMBINATIONAL CIRCUIT 

From the point of view of output(s) the multiplexer can be 

considered as a one level combinational circuit. 

 

Its characteristics is the fast response time. 

 

For the selected input the time delay corresponds to the unit 

gate delay. 

MULTIPLEXER BASED IMPLEMTATION 

OF XOR FUNCTION 
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USING A 4-1 MUX TO IMPLEMENT THE 

MAJORITY FUNCTION 

Principle: Use the A and B inputs to select a pair of minterms. 

The value applied to the MUX input is  

selected from {0, 1, C, C’} to pick the desired behaviour of the 

minterm pair. 

EXAMPLE: USING MULTIPLEXER TO 

IMPLEMENT AN ADDER 

Rearrange truth table: 

 

Use Ai, Bi to select MUX output, connect Ci and Ci’ to MUX 

data inputs. 

Implement  with two 4-to-1 multiplexers and one inverter (to 

generate Ci’)  

Ai   Bi     Si   Ci+1 

 

0     0     Ci    0 

              _ 

0     1     Ci    Ci 

              _ 

1    0     Ci    Ci 

 

1     0     Ci    1 
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1-BIT FULL ADDER:  

MUX IMPLEMENTATION 

49 

74153  dual 4-line to 1-line data selector/multiplexer. 

Two 4/2/1 multiplexers in one package.   

An inverter is also necessary (e.g. 1/6 7404   hex inverter). 

C0 C1 C2 Function Comments 
0 0 0 1 always 1 
0 0 1 A + B logical OR 
0 1 0 (A • B)' logical NAND 
0 1 1 A XOR B logical XOR 
1 0 0 A XNOR B logical XNOR 
1 0 1 A • B logical AND 
1 1 0 (A + B)' logical NOR 
1 1 1 0 always 0 

3 control inputs: C0, C1, C2 
2 data inputs: A, B 
1 output: F 

EXAMPE:  

MULTI PURPOSE FUNCTION BLOCK 
•Multi-purpose Function Block 

– 3 control inputs to specify operation to perform on 

   operands 

– 2 data inputs for operands 

– 1 output of the same bit-width as operands 
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IMPLEMENTATION WITH LOGIC GATES 
C0 C1 C2 A B F 
0 0 0 0 0 1  
0 0 0 0 1 1 
0 0 0 1 0 1 
0 0 0 1 1 1 
0 0 1 0 0 0 
0 0 1 0 1 1 
0 0 1 1 0 1 
0 0 1 1 1 1 
0 1 0 0 0 1 
0 1 0 0 1 1 
0 1 0 1 0 1 
0 1 0 1 1 0 
0 1 1 0 0 0 
0 1 1 0 1 1 
0 1 1 1 0 1 
0 1 1 1 1 0 
1 0 0 0 0 1 
1 0 0 0 1 0 
1 0 0 1 0 0 
1 0 0 1 1 1 
1 0 1 0 0 0 
1 0 1 0 1 0 
1 0 1 1 0 0 
1 0 1 1 1 1 
1 1 0 0 0 1 
1 1 0 0 1 0 
1 1 0 1 0 0 
1 1 0 1 1 0 
1 1 1 0 0 0 
1 1 1 0 1 0 
1 1 1 1 0 0 
1 1 1 1 1 0 
 
 

 

F = 5(0-3,5-10,13,14,16,19,23,24) 

 

Minimization on 5 variable 

Karnaugh map: 

 

 four  4-cubes 

  

0 

1 

2 

3 

 

5 

6 

7 

8 

9 

10 

 

 

13 

14 

 

16 

 

 

19 

 

 

 

23 

24 

1 

  

  

  

  

  

  

0 

A 
B 

A 
B 

A 
B 

FORMALIZE THE PROBLEM 

C0 C1 C2 A B F 
0 0 0 0 0 1 
0 0 0 0 1 1 
0 0 0 1 0 1 
0 0 0 1 1 1 
0 0 1 0 0 0 
0 0 1 0 1 1 
0 0 1 1 0 1 
0 0 1 1 1 1 
0 1 0 0 0 1 
0 1 0 0 1 1 
0 1 0 1 0 1 
0 1 0 1 1 0 
0 1 1 0 0 0 
0 1 1 0 1 1 
0 1 1 1 0 1 
0 1 1 1 1 0 
1 0 0 0 0 1 
1 0 0 0 1 0 
1 0 0 1 0 0 
1 0 0 1 1 1 
1 0 1 0 0 0 
1 0 1 0 1 0 
1 0 1 1 0 0 
1 0 1 1 1 1 
1 1 0 0 0 1 
1 1 0 0 1 0 
1 1 0 1 0 0 
1 1 0 1 1 0 
1 1 1 0 0 0 
1 1 1 0 1 0 
1 1 1 1 0 0 
1 1 1 1 1 0 
 
 

C2 C0 C1 

0 

1 

2 

3 

4 

5 

6 

7 
S2 

8:1 MUX 

S1 S0 

F 

choose implementation technology 

5-variable K-map to discrete gates 

multiplexer implementation 

the target operations are pair wise 

inverse of each other  
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MSI EXAMPLE: 74381/382 ALU 

Eight-operation functional block (”limited” ALU) handling 

two 4-bit words. 

Three logic operations, three arithmetic operations, clear 

and preset operations. 

Gate-based logic …. 
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MUX BASED FUNCTIONAL (SUB-)UNITS 

Data shifters and data rotators 

 

Various logic functional units 

 

Combinational adders/subtractors 

 

Arithmetic logic unit (ALU) 

 

Etc. 
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APPLICATION: MUX BASED SHIFTER 

57 

Draw a 4-bit shifter circuit for the following operation table 

using only six 2-to-1 multiplexers. 

 

Operation table: 

 

 Shift left fill with 0  A3 A2 A1 A0  A2 A1 A0  0 

  

 Shift right fill with 0  A3 A2 A1 A0   0 A3 A2 A1 

 

 Rotate left   A3 A2 A1 A0  A2 A1 A0 A3 

 

 Rotate right   A3 A2 A1 A0  A0 A3 A2 A1 

 

 

MUX BASED SHIFTER 

58 

           _______ 

SHIFT/ROTATE 

 

 

 

 

 

          _____   

LEFT/RIGHT 
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4-BIT LOGIC FUNCTION (AND, XOR) 

CIRCUIT  

x3 
y3 
 
x2 
y2 
 
x1 
y1 
 
x0 
y0 

MUX 

MUX 

MUX 

MUX 

z3 

z2 

z1 

z0 

s 

60 

4-BIT ADDER/SUBTRACTOR CIRCUIT 

x3 
x2 
x1 
x0 

y3 

 

y2 

 

y1 

 

y0 

MUX 

MUX 

MUX 

MUX 

s 

cout 

z3 
z2 
z1 
z0 

A 

B 

C 

4-bit full adder 

cin 
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4-BIT 4-OPERATION ALU 

arithmetic unit 

(+/-) 

logic unit 

(AND/XOR) 

x 

y 

s0 

s1 

4x 2 input 

multiplexer 
z 

4 

4 

4 

4 

4 

4 

4 

REVISION QUESTIONS 

1. What is a multiplexer circuit? Briefly describe one or two 

applications of a multiplexer? 

 

2. Is it possible to enhance the capability of an available 

multiplexer in terms of the number of input lines it can handle 

by using more than one device? If yes, briefly describe the 

procedure to do so, with the help of an example. 

 

3. What is an encoder? How does a priority encoder differ 

from a conventional encoder? With the help of a truth table, 

briefly describe the functioning of a 10-line to four-line priority 

encoder with active LOW inputs and outputs and priority 

assigned to the higher-order inputs. 

. 
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REVISION QUESTIONS 

4. What is a demultiplexer and how does it differ from a 

decoder? Can a decoder be used as a demultiplexer? If yes, 

from where do we get the required input line? 

 

5. Briefly describe how we can use a decoder optimally to 

implement a given Boolean function? Illustrate your answer 

with the help of an example. 

 

6. What is a look-up table (LUT)? How can it be used to 

implement a combinational logic function? 

 

7. Present the layout of the two’s complement 

adder/substractor and explain its operation. 

 

PROBLEMS AND EXERCISES 

1. Design, using only multiplexers (and inverters if 

necessary), a programmable logic gate, which depending on 

the logic value of the control line S, realizes either a two-

input EXCLUSIVE-OR function, or a two-input NAND 

function. 

 

2. Implement the 1-bit full subtractor using 4-to-1 

multiplexeres. 

 

3. A 4-to-1 multiplexer has signals A and B connected to the 

selection inputs S1 and S0, respectively. The data inputs I0 

through I3, are as follows: I1 = 0, I2 = 1, I0 = C; and I3 = C’ 

(C-bar). Determine the Boolean function F(A,B,C) that the 

multiplexer implements. 



2018.09.24. 

33 

PROBLEMS AND EXERCISES 
4. Draw the logic diagram of a 2-to-4 line decoder using 

NOR gates only. Include an enable input. 

 

5. Determine the Boolean function of the output of the 

multiplexer circuit shown below.  

END OF LECTURE 


