
2018.09.24.

1

DIGITAL TECHNICS

Dr. Bálint Pődör

Óbuda University,

Microelectronics and Technology Institute

 3. LECTURE: IMPLEMENTATION OF

COMBINATIONAL LOGIC

1st (Autumn) term 2018/2019

3. LECTURE:

COMBINATIONAL LOGIC IMPLEMENTATION

1. Implementation of combinational logic, general aspects

2. Multiple output logic networks

3. AND-OR-XOR networks

4. Logic design using functional blocks

2018.09.24.

2

SYNTHESIS USING LOGIC GATES

The traditional process of logic synthesis is based on the

application of logic gates.

Its more modern variant makes use of programmable logic

devices too.

However in many case it is more advantageous to use a

logic synthesis procedure based on the application of logic

functional blocks.

IMPLEMENTING COMBINATIONAL LOGIC

The different steps involved in the design of a combinational

logic circuit are as follows:

1. Statement of the problem.

2. Identification of input and output variables.

3. Expressing the relationship between the input and output

 variables.

4. Construction of a truth table to meet input–output

 requirements.

5. Writing Boolean expressions for various output variables

 in terms of input variables.

6. Minimization of Boolean expressions.

7. Implementation of minimized Boolean expressions.

2018.09.24.

3

IMPLEMENTING COMBINATIONAL LOGIC

These different steps are self-explanatory. One or two points,

however, are worth mentioning here.

There are various simplification techniques available for

minimizing Boolean expressions, which have been discussed

in the previously. These include the use of theorems and

identities, Karnaugh mapping, the Quine–McCluskey

tabulation method and so on. Also, there are various possible

minimized forms of Boolean expressions.

The following guidelines should be followed while choosing

the preferred form for hardware implementation:

IMPLEMENTING COMBINATIONAL

LOGIC
1. The implementation should have the minimum number

 of gates, with the gates used having the minimum

 number of inputs.

2. There should be a minimum number of interconnections,

 and the propagation time should be the shortest.

3. Limitation on the driving capability of the gates should

 not be ignored.

It is difficult to generalize as to what constitutes an

acceptable simplified Boolean expression. The importance of

each of the above-mentioned aspects is governed by the

nature of application.

2018.09.24.

4

 Problem statement

 Truth Table

 Minimized

 PoS form

Elimination of hazards

Impementation:

 NAND gates

 Sum of minterms
form

 Minterm table

 Product of maxterms
form

 Maxterm table

 Minimized

SoP form

Elimination of hazards

Implementation:

 NOR gates

Implementation:

NOT-AND-OR

Flow diagram of logic synthesis procedure using gates

IMPLEMENTATION OPTIONS

Ready-made catalog-order (modular) devices (gates,

functional blocks, etc.)

Custom-design devices

Gate-array devices

Programmable logic devices (PLD), e.g. programmable logic

array (PLA), programmable array logic (PAL), etc.

Table look-up (ROM)

Microcomputer

2018.09.24.

5

PROGRAMMABLE ARRAY LOGIC

16-input, 8-otput PAL (P16H8)

PROGRAMMABLE SEQUENTIAL ARRAY

PSA = PLA + registers (flip-flops)

2018.09.24.

6

11

EXAMPLE: CODE CONVERTERS WITH ROM

Various codes are used in digital technics. For the solution of

a given task a certain type of code might be the most

appropriate, however for an other different task an other

code type might be more advantageous.

E. g. in a digital position or angle sensor it is advantageous

to use the Gray code. However the treating of measurement

data and performing arithmetics would be rather complicated

in Gray code, for this the binary code is the best choice.

The various BCD type codes play an important role in the

information exchange between the digital systems and

human beings, however inside the system itself the use of

such code is disadvantageous because of memory capacity

usage, and more complicated arithmetics.

For this reason code conversion is a commonly occurring

task in various digital systems.

12

ROM APPLICATIONS: CODE

CONVERSIONS

One important application of ROMs in combinational logic is

the code conversion.

n-bit code  m-bit code  necessary memory capacity:

m x 2n.

 Practical examples:

8-bit binary code  8-bit Gray code: 256x8 ROM.

13-bit binary code  4 tetrad BCD code:

Two 8-kbyte capacity EPROM, 1s, and 10s, and 100s and

1000s respectively, (13 bit: 0-8191).

2018.09.24.

7

CODE CONVERSION USING ROM

A0 D0

… ...

 … …

A12 D7

A0 D0

… ...

 … …

A12 D7

BCD outputs

1s and 10s

100s and 1000s

Binary inputs

B0 … B12

13-bit binary code to 4 tetrad BCD code converter

14

ROM BASED LOGIC: MULTIPLIER

 X Y Z

0*0 00 00 0000
0*1 00 01 0000
0*2 00 10 0000
0*3 00 11 0000
1*1 01 01 0001
1*2 01 10 0010
1*3 01 11 0011
2*0 10 00 0000
2*1 10 01 0010
2*2 10 10 0100
2*3 10 11 0110
3*0 11 00 0000
3*1 11 01 0011
3*2 11 10 0110
3*3 11 11 1001

ROM

16x 4bit

Z

X

Y

Fast, simple, cheap,

Can generate any function

(look-up-table, LUT)

LUT based logic is used in

several types of FPGAs.

2018.09.24.

8

8x8 BIT COMBINATIONAL MULTIPLIER

4x4 bit partial products are generated by four 256x8 bit ROMs

LUT(ROM) BASED SYSTEM LOGIC

BLOCK

In general, a logic block (CLB or LAB) consists of a few

logical cells (called ALM, LE, Slice etc). A typical cell

consists of a 4-input Lookup table (LUT), a Full adder (FA)

and a D-type flip-flop. The LUT are in this figure split into

two 3-input LUTs. In normal mode those are combined into

a 4-input LUT through the left mux.

2018.09.24.

9

17

MINIMIZATION AND IMPLEMENTATION

OF MULTIPLE OUTPUT NETWORKS:

PRINCIPLE AND DEMO EXAMPLE

b

a

a,b

a

 b

C

B

D

A

Fa = 4(5,12,13)

Fb = 4(3,5,7)

”Elementary” implementation:

four 3-input AND gates and

two 2-input OR gates

Cost function (pin count):

4x3 + 2x2 = 16

Gate count: 6

18

MINIMIZATION AN IMPLEMENTATION OF

MULTIPLE OUTPUT NETWORKS

b

a

a,b

a

 b

C

B

D

A

Fa = 4(5,12,13)

Fb = 4(3,5,7)

2018.09.24.

10

MINIMIZATION AN IMPLEMENTATION OF

MULTIPLE OUTPUT NETWORKS

19

& & &

1 1

 Fa Fb

 _ _ _ _

A B C A B C D A C D

Pin count: 14

Gate count: 5

MINIMIZATION AN IMPLEMENTATION OF

MULTIPLE OUTPUT NETWORKS

In this example the independent minimization of the two

outputs of the pin count is 16, the common minimization

yields 14 pins. The gate counts were 6 and 5 respectively.

The common minimization is generally noticeably optimal, in

this case the pin number decreased by 12.5 percent.

The common implicant can be found by graphical or by

numerical methods. For more then 3 or for outputs the

transparency of the graphical method is strongly reduced, in

such cases e.g. the appropriately modified Quine-McCluskey

algorithm can be used.

2018.09.24.

11

EXAMPLE: MINIMIZATION OF THREE

OUTPUT LOGIC FUNCTION

21

Determine the simplest conceptual two-level AND-OR

logic diagram of the three output logic network:

 Fa = 4(0,1,5,6,7,13)

 Fb = 4(0,1,5,10-15)

 Fc = 4(0,1,8-11,14,15)

The common prime implicants of Fa and Fb are the prime

implicants of the product function Fab = FaFb, etc.

COMMON (PRIME) IMPLICANTS

22

Product functions (pairs):

 Fa = 4(0,1,5,6,7,13)

 Fb = 4(0,1,5,10-15)

 Fc = 4(0,1,8-11,14,15)

Fab = FaFb = 4(0,1,5,13) = m(0,1) + m(5,13)

Fbc = FbFc = 4(0,1,10,11,14,15) = (0,1) + m(10,11,14,15)

Fca = FcFa = 4(0,1) = m(0,1)

2018.09.24.

12

RESULT OF MINIMIZATION (1)

23

Principle: the common prime implicants occurring in more

outputs are implemented only once.

Fa,Fb,Fc: /A /B /C m(0,1)

Fa,Fb: B /C D m(5,13)

Fa,Fb: A C m(10,11,14,15)

24

BCD to 7–segment
control signal

decoder

c0 c1 c2 c3 c4 c5 c6

A B C D

ANOTHER EXAMPLE: BCD TO

7-SEGMENT DISPLAY CONTROLLER

• Understanding the problem

– Input is a 4 bit BCD digit (A, B, C, D)

– Output is the control signals for the display (7 outputs

C0 – C6)

• Block diagram c1 c5

c2 c4
c6

c0

c3

2018.09.24.

13

25

A B C D C0 C1 C2 C3 C4 C5 C6

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 0 0 1 1

1 0 1 – – – – – – – –

1 1 – – – – – – – – –

FORMALIZE THE PROBLEM

• Truth table

– Show don't cares

• Choose implementation

target

– If ROM, we are done

– Don't cares imply PAL/PLA

may be attractive

• Follow implementation

procedure

– Minimization using K-maps

26

C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'
C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

IMPLEMENTATION AS MINIMIZED

SUM-OF-PRODUCTS (SOP)

• 15 unique product terms when minimized individually

1 0 X 1

0 1 X 1

1 1 X X

1 1 X X

D

A

B

C

1 1 X 1

1 0 X 1

1 1 X X

1 0 X X

D

A

B

C

0 1 X 1

0 1 X 1

1 0 X X

1 1 X X

D

A

B

C

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

1 0 X 1

0 1 X 0

1 0 X X

1 1 X X

D

A

B

C

1 0 X 1

0 0 X 0

0 0 X X

1 1 X X

D

A

B

C

1 1 X 1

0 1 X 1

0 0 X X

0 1 X X

D

A

B

C

2018.09.24.

14

27

C0 = B C' D + C D + B' D' + B C D' + A
C1 = B' D + C' D' + C D + B' D'
C2 = B' D + B C' D + C' D' + C D + B C D'
C3 = B C' D + B' D + B' D' + B C D'
C4 = B' D' + B C D'
C5 = B C' D + C' D' + A + B C D'
C6 = B' C + B C' + B C D' + A

C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'
C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

C2

IMPLEMENTATION AS MINIMIZED SOP

(CONT’D)

• Can do better

– 9 unique product terms (instead of 15)

– Share terms among outputs

– Each output not necessarily in minimized form

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

C2

28

C0 = B C' D + C D + B' D' + B C D' + A
C1 = B' D + C' D' + C D + B' D'
C2 = B' D + B C' D + C' D' + C D + B C D'
C3 = B C' D + B' D + B' D' + B C D'
C4 = B' D' + B C D'
C5 = B C' D + C' D' + A + B C D'
C6 = B' C + B C' + B C D' + A

C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'
C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

C2

IMPLEMENTATION AS MINIMIZED SOP

(CONT’D)

• Can do better

– 9 unique product terms (instead of 15)

– Share terms among outputs

– Each output not necessarily in minimized form

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

C2

2018.09.24.

15

29

BC'

B'C

B'D

BC'D

C'D'

CD

B'D'

A

BCD'

A B C D

C0 C1 C2 C3 C4 C5 C6 C7

PLA IMPLEMENTATION

30

AND-OR-XOR LOGIC DEMO EXAMPLE:

BCD-TO-GLIXON CODE CONVERSION

0 1 2 3

7

8

6

9

 5 4

C

B

D

A

Design a (normal)

BCD/Glixon code

converter. The illegal code

words cannot be present at

the inputs.

2018.09.24.

16

EXAMPLE (EXCLUSIVE-OR LOGIC):

BCD-TO-GLIXON CODE CONVERTER

31

The Glixon code is a one-step BCD code (the Hamming

distance is 1). The code words from 0 to 9 are

0000(0) 0001(1) 0011(2) 0010(3) 0110(4)

0111(5) 0101(6) 0100(7) 1100(8) 1000(9)

Normal BCD code: ABCD (A is the MSB)

Glixon code: E3, E2, E1, E0 (E3 is the MSB).

 E3 = Σ4(8,9)X(10-15)

 E2 = Σ4(4-8)X(10-15)

 E1 = Σ4(2-5)X(10-15)

 E0 = Σ4(1,2,5,6)X(10-15)

MINIMIZED TWO LEVEL AND-OR CIRCUIT

32

&

&

&

&

&

1

1

1

E3 = A

 _

E2 = B + A D

 _ _

E1 = B C + B C

 _ _ _

E0 = C D + A C D

Pin count 18

Gate count 8

(plus 4 inverters at

the inputs

2018.09.24.

17

AND-OR-EXCLUSIVE-OR LOGIC

IMPLEMENTATION

33

Using XOR gates in implementing (partially) symmetric

logic functions make possible to obtain more economical

solutions than using standard optimized two-level AND-

OR or OR-AND circuits.

Here this approach can be applied to E1 and E0.

Full or partial symmetry is evident on the Karnaugh map

by noting the chessboard patterns.

34

AND-OR-XOR LOGIC: E1

1 1

1

X

1

X

X

X

X

X

C

B

D

A

 _ _

E1 = B C + B C

(three gates)

E1 = B  C

One gate instead of

three!

2018.09.24.

18

35

AND-OR-XOR LOGIC: E0

1 1

X

1

X

 1

X

X

X

X

C

B

D

A

 _ _ _

E0 = C D + A C D

(three gates)

 _

E0 = A (C  D)

Two gates instead of

three!

AND-OR-XOR LOGIC IMPLEMENTATION

36

&

=1

=1

1

&

E3 = A

 _

E2 = B + A D

E1 = B  C

 _

E0 = A (C  D)

Pin count 11

Gate count 5

Additional benefit: 2 inverters instead of 4 at the input!

2018.09.24.

19

2-LEVEL AND/OR VERSUS AND/OR/XOR

Comparison of the two approaches (including input

inverters where necessary:

 two-level AND/OR (three-level) AND/ORXOR

Pin count 18 11

Gate count 8 5

Input inverters 4 2

COMBINATIONAL LOGIC DESIGN

USING FUNCTIONAL BLOCKS

The traditional process of logic synthesis is based on the

application of logic gates.

However in many case it is more advantageous to use a

logic synthesis procedure based on the application of logic

functional blocks.

Demo examples:
Functional units (multiplexer, decoder) as building blocks
Logical function unit
Mux based shifter

2018.09.24.

20

DIGITAL SYNTHESIS: BUILDING BLOCKS

Lower level of abstraction: gates

Higher hierarchy: functional building blocks

 Encoders, decoders

 Multiplexers, demultiplexers

 Registers, memories

 Comparators

 Adders, etc. (binary arithmetic blocks)

Programmable logic devices

Technological realization: SSI/MSI circuits

FAMILY TREE OF FUNCTIONAL BLOCKS

 functional blocks

 combinational sequential

 exor register

 encoder, decoder latch

 mux, demux counter

 comparator shift register

 adder serial arithmetics

 ALU etc.

 code converters

 tri state buffer

 etc.

2018.09.24.

21

DIGITAL COMPONENTS

High level digital circuit designs are normally made using collections of

logic gates referred to as components, rather than using individual logic

gates.

Levels of integration (numbers of gates) in an integrated circuit (IC):

 Small scale integration (SSI): about 10 gates.

 Medium scale integration (MSI): 10 to 100 gates.

 Large scale integration (LSI): 100-1,000 logic gates.

 Very large scale integration (VLSI): 1,000-upward.

 Ultra large scale integration (ULSI): 10,000-upward.

 Giga large scale Integration (GLSI): 100, 000 upward.

 Ridiculously (?) large scale integration (RLSI): 1,000,000 upward.

These levels are approximate, but the distinctions are useful in

comparing the relative complexity of circuits.

What we need to know about an MSI

circuit?
• Function: what it does

• Truth-table: input-output

• Logic gate diagram: how it does it

• Packaging (module pin-out): how to build it

• Dynamic behavior (timing diagram)

• Applications: where to use it

Common MSI circuits:

 programmable logic devices (PLDs)

 encoder, decoder, exor, comparator,
mux, demux, adder, subtractor,

 arithmetic circuits (adders, multipliers)

 Arithmetic and Logic Unit (ALU)

2018.09.24.

22

• Any combinational circuit can be constructed using
decoders and OR gates!

• Example: Implement a full adder circuit with a decoder and
two OR gates.

• Recall full adder equations, and let X, Y, and Z be the
inputs:

– S(X,Y,Z) = X+Y+Z = m(1,2,4,7)
– C (X,Y,Z) = m(3, 5, 6, 7).

• Since there are 3 inputs and a total of 8 minterms, we need

a 3-to-8 decoder.

DECODER APPLICATION: IMPLEMENTING

BOOLEAN FUNCTIONS USING DECODERS

IMPLEMENTING A BINARY ADDER

USING A DECODER

S(X,Y,Z) = SUM m(1,2,4,7)

C(X,Y,Z) = SUM m(3,5,6,7)

2018.09.24.

23

MULTIPLEXER AS AN UNIVERSAL

COMBINATIONAL CIRCUIT

From the point of view of output(s) the multiplexer can be

considered as a one level combinational circuit.

Its characteristics is the fast response time.

For the selected input the time delay corresponds to the unit

gate delay.

MULTIPLEXER BASED IMPLEMTATION

OF XOR FUNCTION

2018.09.24.

24

USING A 4-1 MUX TO IMPLEMENT THE

MAJORITY FUNCTION

Principle: Use the A and B inputs to select a pair of minterms.

The value applied to the MUX input is

selected from {0, 1, C, C’} to pick the desired behaviour of the

minterm pair.

EXAMPLE: USING MULTIPLEXER TO

IMPLEMENT AN ADDER

Rearrange truth table:

Use Ai, Bi to select MUX output, connect Ci and Ci’ to MUX

data inputs.

Implement with two 4-to-1 multiplexers and one inverter (to

generate Ci’)

Ai Bi Si Ci+1

0 0 Ci 0

 _

0 1 Ci Ci

 _

1 0 Ci Ci

1 0 Ci 1

2018.09.24.

25

1-BIT FULL ADDER:

MUX IMPLEMENTATION

49

74153 dual 4-line to 1-line data selector/multiplexer.

Two 4/2/1 multiplexers in one package.

An inverter is also necessary (e.g. 1/6 7404 hex inverter).

C0 C1 C2 Function Comments
0 0 0 1 always 1
0 0 1 A + B logical OR
0 1 0 (A • B)' logical NAND
0 1 1 A XOR B logical XOR
1 0 0 A XNOR B logical XNOR
1 0 1 A • B logical AND
1 1 0 (A + B)' logical NOR
1 1 1 0 always 0

3 control inputs: C0, C1, C2
2 data inputs: A, B
1 output: F

EXAMPE:

MULTI PURPOSE FUNCTION BLOCK
•Multi-purpose Function Block

– 3 control inputs to specify operation to perform on

 operands

– 2 data inputs for operands

– 1 output of the same bit-width as operands

2018.09.24.

26

IMPLEMENTATION WITH LOGIC GATES
C0 C1 C2 A B F
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 0
1 0 1 1 0 0
1 0 1 1 1 1
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 0

F = 5(0-3,5-10,13,14,16,19,23,24)

Minimization on 5 variable

Karnaugh map:

 four 4-cubes

0

1

2

3

5

6

7

8

9

10

13

14

16

19

23

24

1

0

A
B

A
B

A
B

FORMALIZE THE PROBLEM

C0 C1 C2 A B F
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 0
1 0 1 1 0 0
1 0 1 1 1 1
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 0

C2 C0 C1

0

1

2

3

4

5

6

7
S2

8:1 MUX

S1 S0

F

choose implementation technology

5-variable K-map to discrete gates

multiplexer implementation

the target operations are pair wise

inverse of each other

2018.09.24.

27

MSI EXAMPLE: 74381/382 ALU

Eight-operation functional block (”limited” ALU) handling

two 4-bit words.

Three logic operations, three arithmetic operations, clear

and preset operations.

Gate-based logic ….

2018.09.24.

28

MUX BASED FUNCTIONAL (SUB-)UNITS

Data shifters and data rotators

Various logic functional units

Combinational adders/subtractors

Arithmetic logic unit (ALU)

Etc.

2018.09.24.

29

APPLICATION: MUX BASED SHIFTER

57

Draw a 4-bit shifter circuit for the following operation table

using only six 2-to-1 multiplexers.

Operation table:

 Shift left fill with 0 A3 A2 A1 A0  A2 A1 A0 0

 Shift right fill with 0 A3 A2 A1 A0  0 A3 A2 A1

 Rotate left A3 A2 A1 A0  A2 A1 A0 A3

 Rotate right A3 A2 A1 A0  A0 A3 A2 A1

MUX BASED SHIFTER

58

SHIFT/ROTATE

LEFT/RIGHT

2018.09.24.

30

59

4-BIT LOGIC FUNCTION (AND, XOR)

CIRCUIT

x3
y3

x2
y2

x1
y1

x0
y0

MUX

MUX

MUX

MUX

z3

z2

z1

z0

s

60

4-BIT ADDER/SUBTRACTOR CIRCUIT

x3
x2
x1
x0

y3

y2

y1

y0

MUX

MUX

MUX

MUX

s

cout

z3
z2
z1
z0

A

B

C

4-bit full adder

cin

2018.09.24.

31

61

4-BIT 4-OPERATION ALU

arithmetic unit

(+/-)

logic unit

(AND/XOR)

x

y

s0

s1

4x 2 input

multiplexer
z

4

4

4

4

4

4

4

REVISION QUESTIONS

1. What is a multiplexer circuit? Briefly describe one or two

applications of a multiplexer?

2. Is it possible to enhance the capability of an available

multiplexer in terms of the number of input lines it can handle

by using more than one device? If yes, briefly describe the

procedure to do so, with the help of an example.

3. What is an encoder? How does a priority encoder differ

from a conventional encoder? With the help of a truth table,

briefly describe the functioning of a 10-line to four-line priority

encoder with active LOW inputs and outputs and priority

assigned to the higher-order inputs.

.

2018.09.24.

32

REVISION QUESTIONS

4. What is a demultiplexer and how does it differ from a

decoder? Can a decoder be used as a demultiplexer? If yes,

from where do we get the required input line?

5. Briefly describe how we can use a decoder optimally to

implement a given Boolean function? Illustrate your answer

with the help of an example.

6. What is a look-up table (LUT)? How can it be used to

implement a combinational logic function?

7. Present the layout of the two’s complement

adder/substractor and explain its operation.

PROBLEMS AND EXERCISES

1. Design, using only multiplexers (and inverters if

necessary), a programmable logic gate, which depending on

the logic value of the control line S, realizes either a two-

input EXCLUSIVE-OR function, or a two-input NAND

function.

2. Implement the 1-bit full subtractor using 4-to-1

multiplexeres.

3. A 4-to-1 multiplexer has signals A and B connected to the

selection inputs S1 and S0, respectively. The data inputs I0

through I3, are as follows: I1 = 0, I2 = 1, I0 = C; and I3 = C’

(C-bar). Determine the Boolean function F(A,B,C) that the

multiplexer implements.

2018.09.24.

33

PROBLEMS AND EXERCISES
4. Draw the logic diagram of a 2-to-4 line decoder using

NOR gates only. Include an enable input.

5. Determine the Boolean function of the output of the

multiplexer circuit shown below.

END OF LECTURE

