
1 

 

DIGITAL TECHNICS 
 

Dr. Bálint Pődör 
 

Óbuda University,   

Microelectronics and Technology Institute  
 

4. LECTURE: COMBINATIONAL LOGIC DESIGN: 

ARITHMETICS (THROUGH EXAMPLES) 
 

 

 

 

 

 
2nd (Autumn) term 2018/2019 

COMBINATIONAL LOGIC DESIGN:  

EXAMPLES AND CASE STUDIES 

 
• Arithmetic circuits 

 
– General aspects, and elementary circuits 

 
– Addition/subtraction 

 
– BCD arithmetics 

 
– Multipliers 

 
– Division 

 
 



2 

ARITHMETIC CIRCUITS 

• Excellent Examples of Combinational Logic Design 

 

• Time vs. Space Trade-offs 

– Doing things fast may require more logic and thus 

more space 

– Example: carry lookahead logic 

 

• Arithmetic and Logic Units 

– General-purpose building blocks 

– Critical components of processor datapaths 

– Used within most computer instructions 

ARITHMETIC CIRCUITS:  

BASIC BUILDING BLOCKS 

Below I will discuss those combinational logic building 

blocks that can be used to perform addition and subtraction 

operations on binary numbers. Addition and subtraction are 

the two most commonly used arithmetic operations, as the 

other two, namely multiplication and division, are 

respectively the processes of repeated addition and 

repeated subtraction. 

 

We will begin with the basic building blocks that form the 

basis of all hardware used to perform the aforesaid 

arithmetic operations on binary numbers. These include 

half-adder, full adder, half-subtractor, full subtractor and 

controlled inverter. 



3 

HALF-ADDER AND FULL-ADDER 

Half-adder 
This circuit needs 2 binary inputs and 2 binary outputs. 
The input variables designate the augend and addend bits: the 
output variables produce the sum and carry. 
 
Full-adder 

Is a combinational circuit that forms the arithmetic sum of 3 bits.  

Consists of 3 inputs and 2 outputs. 

When all input bits are 0, the output is 0. 

The output S equal to 1 when only one input is equal to 1 or 

when all 3 inputs are equal to 1. 

The C output has a carry of 1 if 2 or 3 inputs are equal to 1. 
 

 

Ai Bi Sum Cout 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 1 1 

Ai Bi Cin Sum Cout 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

CIRCUITS FOR BINARY ADDITION 

• Half adder (add two 1-bit numbers) 

– Sum = Ai' Bi + Ai Bi' = Ai xor Bi 

– Cout = Ai Bi 

• Full adder (carry-in to cascade for multi-bit adders) 

– Sum = Ci xor A xor B 

– Cout = B Ci  +  A Ci  +  A B = Ci (A + B) + A B 



4 

7 

ON THE IMPLEMENTATION  

OF THE FULL ADDER  

A possible technique for implementing the 1-bit full adder is 

to generate the two relevant logic function directly 

        _ _           _    _          _ _ 

 Si = AiBiCi-1 + AiBiCi-1 + AiBiCi-1 + AiBiCi-1  

 

 Ci = AiBi + AiCi-1 + BiCi-1  

 

Both require a two level AND-OR circuitry, therefore the 

time required to achieve the sum and the carry is equal to 

the propagation delay of two gates, or 2 tpd. 

 

An other possibility is to generat the sum using XOR gates. 

1-BIT FULL ADDER IMPLEMENTATIONS 

8 

(d)

(e)

(f)

(g)

x
i

y
i

c
i-1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
1
1

0
1
1
0
1
0
0
1

c
i

s
i

FA

x
i

y
i

c
i s

i

c
i-1

s
i

c
i

c
i-1

y
i

x
i

c
i-1

y
i

x
i

s
i



5 

Cout = A B + Cin (A xor B) = A B + B Cin + A Cin 

A 
B 

Cin 
S 

A 

A 

B 

B 

Cin 
Cout 

A 

B 

A xor B 

Cin 

A xor B xor Cin 
Half 

Adder 

Sum 

Cout Cin (A xor B) A B 

Sum 

Cout 

Half 
Adder 

Sum 

Cout 

FULL ADDER IMPLEMENTATIONS 

• Standard approach 

– 6 gates 

– 2 XORs, 2 ANDs, 2 ORs 

 

 

 

• Alternative implementation 

– 5 gates 

– half adder is an XOR gate and AND gate 

– 2 XORs, 2 ANDs, 1 OR 

FULL ADDER IMPLEMENTED IN CMOS 

The simplest forms of the sum and carry function are 

(written in a form appropriate to CMOS implementation) 

         _     _     _                       _ _ 

  S = C(A B + A B) + C(A B + A B) 

 

  Cout = A B + C(A + B) 

 

This is easily implemented using standard CMOS 

principles. The total transistor count is 34. 

 

The disadvantage is that the circuit uses the negated 

values of the input variables too. 

 



6 

FULL ADDER IMPLEMENTED IN CMOS 

11 

Static CMOS adder, a. sum, b. carry circuit 

FULL ADDER IMPLEMENTED IN CMOS 

The sum and carry functions can be rearranged: 

 

 

  Cout = A B + C(A + B) 

                 ___ 

  S = (A + B +C )Cout + A B C  

 

The advantage gained is that the complemented 

opearands are not needed. 

This is also easily implemented using standard CMOS 

principles. The total transistor count is only 28. 

 

The disadvantage is that the circuit has three levels. 

 



7 

 28 TRANSISTOR CMOS FULL ADDER 

28 transistors 

A B

B

A

Ci

Ci A

X

VDD

VDD

A B

Ci BA

B VDD

A

B

Ci

Ci

A

B

A CiB

Co

VDD

S

Cout = A B + C(A + B) 

               ___ 

S = (A + B +C )Cout + A B C  

HALF- AND FULL SUBTRACTOR 

The subtraction of two given binary numbers canbe carried 

out by adding 2’s complement of the subtrahend to the 

minuend. This allows us to do a subtraction operation with 

adder circuits. 

 

However, we will also briefly look at the counterparts of 

half-adder and full adder circuits in the half-subtractor and full 

subtractor for direct implementation of subtraction operations 

using logic gates. 

 



8 

HALF-SUBTRACTOR 

A half-subtractor is a combinational circuit that can be used 

to subtract one binary digit from another to produce a 

DIFFERENCE output and a BORROW output. The 

BORROW output here specifies whether a ‘1’ has been 

borrowed to perform the subtraction. 

COMBINED HALF ADDER/SUBTRACTOR 

Control 0 ADD 

Control 1 SUBTRACT 



9 

FULL SUBTRACTOR 

A full subtractor performs subtraction operation on two bits, 

a minuend and a subtrahend, and also takes into 

consideration whether a ‘1’ has already been borrowed by 

the previous adjacent lower minuend bit or not. As a result, 

there are three bits to be handled at the input of a full 

subtractor, namely the two bits to be subtracted and a 

borrow bit designated as Bin . There are two outputs, 

namely the DIFFERENCE output D and the BORROW 

output Bo. The BORROW output bit tells whether the 

minuend bit needs to borrow a ‘1’ from the next possible 

higher minuend bit. 

FULL SUBTRACTOR 

Truth table of a full subtractor 



10 

FULL SUBTRACTOR 

Logic implementation of a full subtractor with half-subtractors. 

CONTROLLED INVERTER 

A controlled inverter is needed when an adder is to be used as 

a subtractor. Subtraction is addition of the 2’s complement of 

the subtrahend to the minuend. Thus, the first step towards  

implementation of a subtractor is to determine the 2’s 

complement of the subtrahend. And for this, one needs firstly to 

find 1’s complement. A controlled inverter is used to find 1’s 

complement. A one-bit controlled inverter is a two-input EX-OR 

gate with one of its inputs treated as a control input. 

Eight-bit controlled inverter 



11 

A B 

Cout 

Sum 

Cin 

0 1 

Add' 
Subtract 

A0 B0 B0' 

Sel 

Overflow 

A B 

Cout 

Sum 

Cin 

A1 B1 B1' 

Sel 

A B 

Cout 

Sum 

Cin 

A2 B2 B2' 

Sel 0 1 0 1 0 1 

A B 

Cout 

Sum 

Cin 

A3 B3 B3' 

Sel 

S3 S2 S1 S0 

ADDER/SUBTRACTOR 

• Use an adder to do subtraction thanks to 2s complement 

representation 

– A – B  =   A + (– B)   =   A + B' + 1 

– Control signal selects B or 2s complement of B 

TWO’S COMPLEMENT 

ADDER/SUBTRACTOR 
Q = (q

3
  q

2
  q

1 
 q

0
)

2

P = (p
3
  p

2 
 p

1
  p

0
)

2

4A3A2A 1B4B 2B3B

S

G

C0C4

Select

R = (r
4
 r

3
 r

2
 r

1
)

2

R = P + Q

R = P + Q + 1

0

1

Select Function

1A

1Y2Y3Y4Y

A4 A3 A2 A1 B4 B3 B2 B1

S4 S3 S2 S1

MUX (74157)

ADDER (7483)



12 

RIPPLE CARRY ADDER 

The full adder is for adding two operands that are only one bit 

wide. To add two operands that are, say four bits wide, we 

connect four full adders together in series. The resulting circuit 

is called a ripple carry adder for adding two 4-bit operands. 

 

 

 

 

 

 

The ripple-carry adder is slow because the carry-in for each full 

adder is dependent on the carry-out signal from the previous 

FA. So before FAi can output valid data, it must wait for FAi–1 to 

have valid data. 

CARRY-LOOKAHEAD ADDER 

The layout of a ripple carry adder is simple, which allows 

for fast design time, however, the ripple carry adder is 

relatively slow, since each full adder must wait for the carry 

bit from the previous full adder.  

 

From Cin to Cout 2 gates should be passed through. Ergo a 

32-bit adder requires 31 carry computations and the final 

sum calculation for a total of 31x2 + 1 = 63 gate delays. 

 

In the carry-lookahead adder, each bit slice eliminates this 

dependency on the previous carry-out signal and instead 

uses the values of the two input operands, directly to 

deduce the needed signals. This is possible from the 

following observations regarding the carry-out signal. 



13 

FULL ADDER: GENERATION AND 

PROPAGATION OF CARRY  
A B

Cout

Sum

Cin Full
adder

Co = A B + (A  B)Ci 

 

or 

 

Co = A B + (A + B)Ci 

 

Co = G + P Ci Define G and P auxiliary functions 

A 

A 

B 

B 

Cin Cout 

@0 

@0 

@0 
@0 

@N 

@1 

@1 

@N+1 

@N+2 

late 
arriving 
signal 

two gate delays 
to compute Cout 

4 stage 
adder 

A0 
B0 

Cin 

S0 @2 

A1 
B1 

C1 @2 

S1 @3 

A2 
B2 

C2 @4 

S2 @5 

A3 
B3 

C3 @6 

S3 @7 
Cout @8 

RIPPLE-CARRY ADDERS 

• Critical Delay 

– The propagation of carry from low to high order 

stages 

A 
B 

Cin 
S 



14 

CRITICAL PATH TROUGH  

A RIPPLE CARRY ADDER 

CARRY LOOK-AHEAD ADDER 

Carry look-ahead adders reduce the computation time.  

They work creating propagate and generate signals (P and 

G) for each bit position, and using them the carries for each 

position are created. 

 

Some multi-bit adder architectures break the adder into 

blocks. It is possible to vary the length of these blocks 

based on the propagation delay of the circuits to optimize 

computation time. These block based adders include the 

carry bypass adder which will determine P and G for each 

block rather than each bit, and the carry select adder which 

pre-generates sum and carry values for either possible 

carry input  to the block.  



15 

FASTER ADDITION:  

CARRY LOOKAHEAD LOGIC 

Principal layout of carry lookahead adder.  

Operands 

 

 

 

 

Carry 

Logic 

 

 

Sum 

FA FA FA FA 

CARRY-LOOKAHEAD LOGIC 

• Carry generate:  Gi = Ai Bi 

– Must generate carry when A = B = 1 

 

• Carry propagate:  Pi = Ai xor Bi 

– Carry-in will equal carry-out here 

 

• Sum and Cout can be re-expressed in terms of 

generate/propagate: 

– Si = Ai xor Bi xor Ci 

 = Pi xor Ci 

– Ci+1= Ai Bi + Ai Ci + Bi Ci 

 = Ai Bi + Ci (Ai + Bi) 

 = Ai Bi + Ci (Ai xor Bi) 

 = Gi + Ci Pi 



16 

CARRY-LOOKAHEAD LOGIC 

• Re-express the carry logic as follows: 

– C1 = G0 + P0 C0 

– C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0 

– C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 

P0 C0 

– C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 

P1 G0                                                                              

+ P3 P2 P1 P0 C0 

 

• Each of the carry equations can be implemented with 

two-level logic 

– All inputs are now directly derived from data inputs and 

not from intermediate carries 

– this allows computation of all sum outputs to proceed 

in parallel 

G3 

C0 C0 

C0 

C0 
P0 P0 

P0 

P0 

G0 
G0 

G0 

G0 
C1 

P1 

P1 

P1 

P1 

P1 

P1 G1 

G1 

G1 

C2 
P2 

P2 

P2 

P2 

P2 

P2 

G2 

G2 

C3 

P3 

P3 

P3 

P3 

C4 

Pi @ 1 gate delay 

Ci 
Si @ 2 gate delays 

Bi 
Ai 

Gi @ 1 gate delay increasingly complex 

logic for carries 

CARRY-LOOKAHEAD IMPLEMENTATION 

Adder with propagate and generate outputs 



17 

CARRY LOOKAHEAD CIRCUITRY 

(a) Circuit for generating the carry-lookahead signals, c1 to c4;  

(b) One bit slice of the carry-lookahead adder. 

A0 
B0 

Cin 

S0 @2 

A1 

B1 

C1 @2 

S1 @3 

A2 

B2 

C2 @4 

S2 @5 

A3 

B3 

C3 @6 

S3 @7 

Cout @8 

A0 

B0 

Cin 

S0 @2 

A1 
B1 

C1 @3 

S1 @4 

A2 

B2 

C2 @3 

S2 @4 

A3 

B3 

C3 @3 

S3 @4 

C4 @3 C4 @3 

CARRY-LOOKAHEAD IMPLEMENTATION 

Carry-lookahead logic generates individual carries 

Sums computed much more quickly in parallel 

However, cost of carry logic increases with more stages 



18 

4-BIT CARRY LOOKAHEAD ADDER CIRCUIT 

“carry-out”, not “c-zero” 

Total 26 gates, c.f. 4 standard full adders 4x6 = 24 gates 

74HC/HCT181 4-BIT ALU LOGIC DIAGRAM 



19 

CARRY LOOKAHEAD ADDERS: FEATURES 

• By adding more hardware, we reduced the number of levels in the 
circuit and sped things up. 

• We can “cascade” carry lookahead adders, just like ripple carry 
adders. (We’d have to do carry lookahead between the adders too.) 

• How much faster is this? 

– For a 4-bit adder, not much. There are 4 gates in the longest 
path of a carry lookahead adder, versus 9 gates for a ripple carry 
adder. 

– But if we do the cascading properly, a 16-bit carry lookahead 
adder could have only 8 gates in the longest path, as opposed to 
33 for a ripple carry adder. 

– Newer CPUs these days use 64-bit adders. That’s 12 vs. 129 
gates! 

• The delay of a carry lookahead adder grows logarithmically with the 
size of the adder, while a ripple carry adder’s delay grows linearly. 

 

• The thing to remember about this is the trade-off between 
complexity and performance.  Ripple carry adders are simpler, but 
slower.  Carry lookahead adders are faster but more complex. 

Lookahead Carry Unit 
C0 

P0 G0 P1 G1 P2 G2 P3 G3 C3 C2 C1 

C0 

P3-0 G3-0 

C4 

@3 @2 
@4 

@3 @2 
@5 

@3 @2 
@5 

@3 @2 

@4 

@5 @3 

@0 
C16 

A[15-12] B[15-12] 
C12 

S[15-12] 

A[11-8] B[11-8] 
C8 

S[11-8] 

A[7-4] B[7-4] 
C4 

S[7-4] 
@7 @8 @8 

A[3-0] B[3-0] 
C0 

S[3-0] 

@0 

@4 

4 4 

4 

P G 

4-bit Adder 

4 4 

4 

P G 

4-bit Adder 

4 4 

4 

P G 

4-bit Adder 

4 4 

4 

P G 

4-bit Adder 

CARRYLOOKAHEAD ADDERS WITH  

CASCDED CARRY-LOOKAHEAD LOGIC 
• Carry-lookahead adder 

– 4 four-bit adders with internal carry lookahead 

– Second level carry lookahead unit extends lookahead to 

16 bits 



20 

4-Bit Adder 
[3:0] 

C0 C4 

4-bit adder 
[7:4] 

1 C8 

0 C8 

five 
2:1 mux 

   0    1   0    1  0    1 0 1 

adder  
low 

adder 
high 

0 1 

4-bit adder 
[7:4] 

C8 S7 S6 S5 S4 S3 S2 S1 S0 

CARRY-SELECT ADDER 
Redundant hardware to make carry calculation go faster 

Compute two high-order sums in parallel while waiting for carry-in 

One assuming carry-in is 0 and another assuming carry-in is 1 

Select correct result once carry-in is finally computed 

CARRY-SELECT ADDERS 



21 

MULTILEVEL CARRY-SELECT ADDERS 

42 

ARITHMETICAL OPERATIONS IN BCD 

Many digital systems (processors, computers) can perform the 

arithmetical operations or a part of them directly on BCD 

numbers. 

 

E.g. the microprocessors can perform BCD addition, several of 

them subtraction too. Certain special processors can perform 

BCD multiplication and division too. 

 

The BCD addition is reduced to binary addition. The tetrades of 

the operands are added as binary numbers, and if necessary 

(illegal codewords or decimal carry is generated during the 

addition), a systematic correction is performed. 

 



22 

BCD ADDITION 

A BCD adder is used to perform the addition of BCD numbers.  

A BCD digit can have any of the ten possible four-bit binary 

representations, that is, 0000, 0001,    , 1001, the equivalent of 

decimal numbers 0, 1, …   , 9.  

When we set out to add two BCD digits and we assume that 

there is an input carry too, the highest binary number that we 

can get is the equivalent of decimal number 19 (9+9+1). 

This binary number is going to be (10011)bin. On the other 

hand, if we do BCD addition, we would expect the answer to 

be (0001 1001)BCD. And if we restrict the output bits to the 

minimum required, the answer in BCD would be (1 1001)BCD. 

44 

ADDITION IN NORMAL BCD (8421) CODE 

If the sum of two tetrades is not larger than 9, the result is 

valid, no correction is necessary. 

 

If the sum of two tetrades is larger than 9, (decimal carry and 

illegal codeword or pseudotetrade is generated) the result is 

valid only in binary system and not in BCD. The necessary 

correction is to add decimal 6 or i.e. binary 0110 to the actual 

tetrade. 

 

The correction should be performed beginning form the least 

significant tetrade and going upwards step-by-step. 

 



23 

45 

FUNCTIONAL DIAGRAM OF A BCD 

ADDER (1 DIGIT) 

B3 

B2 

B1 

B0 

A3 

A2 

A1 

A0 

S3 

S2 

S1 

S0 

Binary 

adder 

C4 

C0 

„0” 

B3 

B2 

B1 

B0 

A3 

A2 

A1 

A0 

B3 

B2 

B1 

B0 

A3 

A2 

A1 

A0 

S3 

S2 

S1 

S0 

Binary 

adder 

C0 

& 1 

& 

„0” 

„0” 

„0” 

S3 

S2 

S1 

S0 

C4 

The first adder adds the two codes corresponding to the k-th 

decimal place, the second adds 6 if necessary. 

APPLICATION: 2-DIGIT BCD ADDER 



24 

47 

SUBTRACTION  IN BCD (8421) CODE 

In BCD as in binary, the subtraction is performed by 

complementing (the subtrahend) and addition. Generally 9’s 

complement is used. 

 

The circuit generating the 9’s complement can be 

constructed from common gates or form more complex 

functional elements. 

 

 

 

GENERATING 9’S COMPLEMENT IN BCD 

=1 =1 =1 =1 

4-BIT ADER 

   

  

A3       A2       A1       A0 

X3      X2      X1      X0 

0       0 If V = 0 then Xk = Ak 

 

If V = 1 then 

8X3+4X2+2X1+X0 = 

 

= 9 – (8A3+4A2+2A1+A0) 

V 



25 

49 

SSI MODULAR LOGIC: 4-BIT BCD ADDER  

50 

SSI MODULAR LOGIC: 4-BIT BCD ADDER  

The 74F583 4-bit coded (BCD) full adder performs the addition 

of two decimal numbers (A0–A3, B0–B3). The look-ahead 

generates BCD carry terms internally, allowing the 74F583 to 

do BCD addition correctly.  

 

For BCD numbers 0 through 9 at A and B inputs, the BCD sum 

forms at the output. 

 

In addition of two BCD numbers totalling a number greater 

than 9, a valid BCD number and carry will result. 



26 

51 

4-BIT BCD ADDER LOGIC DIAGRAM 

Gate count 75 

(incl. inverters) 
74F583 

MULTIPLIERS 
A binary multiplier is an electronic circuit used in digital 

electronics, such as a computer, to multiply two binary numbers. 

 

A variety of computer arithmetic techniques can be used to 

implement a digital multiplier. Most techniques involve 

computing a set of partial products, and then summing the 

partial products together. This process is similar to the method 

taught to primary school children for conducting long 

multiplication on base-10 integers, but has been modified here 

for application to a base-2 (binary) numeral system. 

 

The first stage of most multipliers involves generating the partial 

products which is nothing but an array of AND gates. An n-bit by 

n-nit multiplier requires n2 AND gates for partial product 

generation.  

The partial products are then added to give the final results. 



27 

THEORY OF MULTIPLICATION 

Basic Concept 

multiplicand 
 
multiplier 

1101   (13) 
 
1011   (11) 
 
1101 

1101 

0000 

1101 

* 

10001111 (143) 

Partial products 

product of two 4-bit numbers 
is an 8-bit number 

COMBINATIONAL MULTIPLIER 

Partial Product Accumulation 

A0 
 

B0 
 

A0 B0 

A1 
 

B1 
 

A1 B0 
 

A0 B1 

A2 
 

B2 
 

A2B0 
 

A1 B1 
 

A0 B2 

A3 
 

B3 
 

A2 B0 
 

A2 B1 
 

A1 B2 
 

A0 B3 

 
 
 
 
 
 

A3 B1 
 

A2 B2 
 

A1 B3 

 
 
 
 
 
 
 
 

A3 B2 
 

A2 B3 

 
 
 
 
 
 
 
 
 
 

A3 B3 

S6 S5 S4 S3 S2 S1 S0 S7 



28 

THE ARRAY MULTIPLIER (4x4 BIT) 

PARTIAL PRODUCT ACCUMULATION 

Note use of parallel carry-outs to form higher order sums 
 
12 Adders, if full adders, this is 6 gates each = 72 gates 
 
16 gates form the partial products 
 
total = 88 gates! 

A 0 B 0 A 1  B 0 A 0 B 1 A 0 B 2 A 1 B 1 A 2 B 0 A 0 B 3 A 1 B 2 A 2 B 1 A 3 B 0 A 1 B 3 A 2 B 2 A 3 B 1 A 2 B 3 A 3 B 2 A 3 B 3 

HA 

S 0 S 1 

HA 

F A 

F A 

S 3 

F A 

F A 

S 4 

HA 

F A 

S 2 

F A 

F A 

S 5 

F A 

S 6 

HA 

S 7 



29 

57 

SSI REALIZATION OF 4x4 BIT MULTIPLIER 

COMBIATIONAL MULTIPLIER  

Another Representation of the Circuit 

A3 B0

S
C

A2 B0

S
C

A1 B0

S
C

A0 B0

S
C

A3 B1

S
C

A2 B1

S
C

A1 B1

S
C

A0 B1

S
C

A3 B2

S
C

A2 B2

S
C

A1 B2

S
C

A0 B2

S
C

A3 B3

S
C

A2 B3

S

A1 B3

S

A0 B3

S

B0

B1

B2

B3

P7 P6 P5 P4 P3 P2 P1 P0

A3 A2 A1 A0

Building block: FULL  ADDER + AND 

4 x 4 array of building blocks 

F A 

X 

Y 

A B 

S 
CI CO 

Cin 
Sum In 

Sum Out Cout 



30 

MAKING A 2n-BIT MULTIPLIER 

USING n-BIT MULTIPLIERS 

E.g. in the case of a 8-bit multiplier, it ia possible to partition 

the problem by splitting both the multiplier and multiplicand 

into two 4-bit words. 

 

N1 = (24H1 + L1) 

N2 = (24H2 + L2) 

 

Multiplying out 

 

N1N2 = 28H1H2 + 24(H1L2 + H2L1) + L1L2 

MAKING A 2n-BIT MULTIPLIER 

USING n-BIT MULTIPLIERS 

Given n-bit multipliers: 

Synthesize 2n-bit multipliers: 



31 

MAKING A 2n-BIT MULTIPLIER 

USING n-BIT MULTIPLIERS 

Induction:  we can use the same 
structuring principle to build a 4n-bit 
multiplier from our newly-constructed 
2n-bit ones...   

REGROUP 

partial           

products – 

2 additions 

rather than 3! 

2n-bit by 2n-bit multiplication: 

 

1. Divide multiplicands into n-bit pieces 

2. Form 2n-bit partial products, using n-bit by n-bit 
multipliers. 

3. Align appropriately 

4. Add. 

 

62 

MULTIPLIER: MODULAR STRUCTURE 

8 x 8 bit multiplier built from 4 x 4 bit modules   



32 

63 

MULTIPLIER: MODULAR STRUCTURE 

8 x 8 bit multiplier built from 4 x 4 bit modules 

Product  MSB : 0, LSB: 15) 

4x4 

MULT 
4x4 

MULT 

4x4 

MULT 

4x4 

MULT 

16 BIT ADDER 16 BIT ADDER 

16 BIT ADDER 

ROM IMPLEMENTED MULTIPLIER 

Binary multiplication can be achieved by using a ROM as a 

”look-up table”. E.g., multiplication of  two 4-bit numbers 

requires a ROM having eight address lines, four of them 

X4XRX2X1  being allocated to the multiplier, and the 

remaining four, Y4Y3Y2Y1 to the multiplicand. Since the 

multiplication of two 4-bit numbers can result in a double-

length product, the ROM should have eight output lines, and a 

room with capacity of 256 bytes is required. 

 

For two 8-bit numbers 216 = 65336 memory locations and 16 

output lines for the double-length products are required. This 

requires a ROM of 128 kbytes. For 16-bit multiplication the 

required ROM capacity is formidable (16 Gbytes!). 



33 

8x8 BIT COMBINATIONAL MULTIPLIER  

4x4 bit partial products are generated by four 256x8 bit ROMs 

MULTIPLICATION: NEGATIVE NUMBERS 

The basic school method of multiplication handles the sign 

with a separate rule ("+ with + yields +", "+ with - yields -", 

etc.). Modern computers embed the sign of the number in the 

number itself, usually in the two’s complement representation. 

That forces the multiplication process to be adapted to handle 

two's complement numbers, and that complicates the process 

a bit more. Similarly, processors that use one’s complement 

sign-and-magnitude, IEEE-754 or other binary representations 

require specific adjustments to the multiplication process. 

 



34 

MULTIPLICATION: SPEEDING IT UP 

Older multiplier architectures employed a shifter and 

accumulator to sum each partial product, often one partial 

product per cycle, trading off speed for die area.  

 

Modern multiplier architectures use the Baugh-Wooley 

algorithm, Wallace tree or Dadda to add the partial 

products together in a single cycle. The performance of 

the Wallace tree implementation is sometimes improved 

by modified Booth encoding one of the two multiplicands, 

which reduces the number of partial products that must be 

summed. 

 

BOOTH ENCODING MULTIPLIER 

System layout of Booth encoding 8-bit multiplier 



35 

BOOTH ENCODING MULTIPLICATION 

The multiplier takes in two 8-bits operands:  

the multiplier(MR) and the multiplicand (MD), then produces 

16-bit multiplication result of the two as its output. 

 

The architecture comprises four parts:  

 Complement Generator,  

 Booth Encoder,  

 Partial Product and  

 Carry Look-ahead Adder.  

BOOTH ENCODING DEMO 



36 

MULTIPLIERS: COMPLEXITY 

Transistor count for generic multiplier circuits is based 

on static CMOS implementation 

 

 8-bit  3000 

 

 16-bit  9000 

 

 32-bit  21000 

 

i.e. in the LSI range. 

REVISION QUESTIONS 

1. Present the layout of the two’s complement  

adder/substractor and explain its operation. 

 

2. Describe the operation of the carry lookahead adder. 

 

3. Describe the operation of the carry-select adder. 

 

4. Present the layout of a (one digit) BCD adder and 

explain its operation. 

 

5. Describe the layout and operation of the combinational 

multiplier. 



37 

PROBLEMS AND EXERCISES 

1. Implement the 2-bit adder function (i.e., 2-bit binary 

number AB plus 2-bit binary number CD yields 3-bit result 

XYZ) using three 8:1 multiplexers. Show your truth table and 

how you derived the inputs to the multiplexers. 

 

2. Construct a circuit which multiplies a 4-bit binary number 

(X3 X2 X1 X0) by six. Use a 4-bit adder (functional block), 

and a minimum number of other gates. 

 

3. Design an eight-bit adder–subtractor circuit using four-bit 

binary adders, type number 7483, and quad two-input XOR 

gates, type number 7486. Assume that pin connection 

diagrams of these ICs are available to you. Give short 

description of your design and its operation. 

  

 

PROBLEMS AND EXERCISES 

4. Design a BCD adder circuit capable of adding BCD 

equivalents of two-digit decimal numbers. Indicate 

the IC type numbers used if the design has to be TTL logic 

family compatible. 

 

5. Using representation on 8 bits perform in 2’s 

complement the following operations: 

 

 25+30=? 25-30=? 30-25=? 


