
2018.10.20.

1

1

DIGITAL TECHNICS

Dr. Bálint Pődör

Óbuda University,

Microelectronics and Technology Institute

6. LECTURE (ANALYSIS AND SYNTHESIS OF

SYNCHRONOUS SEQUENTIAL CIRCUITS)

1st (Autumn) term 2018/2019

2

6. LECTURE

Analysis and synthesis of

synchronous sequential circuits:

Design examples and case studies

2018.10.20.

2

SYNTHESIS: GENERAL CONCEPTS

Synchronous sequential circuits synthesis procedure

 Word description of problem (hardest; art, not science)

 Derive state diagram and state table

 Minimize (moderately hard)

 Assign states (very hard)

 Produce state and output transition tables

 Determine what FFs to use and find their excitation maps

 Derive output equations/K-maps

 Obtain the logic diagram

STATE MACHINE

4 General scheme of a state machine.

2018.10.20.

3

STATE MACHINE SYNTHESIS

5

The strategy for applying this scheme to a given problem

consists of the following:

1. Identify the number of required states, m. The number

of bits of memory (e.g. number of flip-flops) required to

specify the m states is at minimum n = log2(m).

2. Make a state diagram which shows all states, inputs,

and outputs.

3. Make a truth table for the logic section. The table will

have n + k inputs and n + m outputs.

4. Implement the truth table using combinational logic

techniques.

6

SYNTHESIS OF SEQUENTIAL CIRCUIT:

A CASE STUDY
• Synthetize a network which determines the parity of a four

 bit serial code word.

• Should indicate the parity of the incoming code word

 after receiving the 4-th bit as

 - 1 if the parity is odd,

 - 0 if the parity is even.

• The output is irrelevant (don’t care) during the first three

 cycle of the period.

This design project being rather elementary will be skipped

now, however it can be read in the Moodle files.

Instead of it a more complex problem, a traffic control system

will be presented and discussed.

2018.10.20.

4

7

4-BIT PARITY INDICATOR

• When checking the parity the order of the bits is irrelevant.

• Construct the state transition diagram of the

 Mealy-machine.

Mealy

machine

8

4-BIT PARITY INDICATOR:

STATE TRANSITION DIAGRAM

left (s)- even

right (n) - odd

red - incoming bit 0

green - incoming bit 1

The output Z is defined only

in the fourth cycle, otherwise

it is ”don’t care”.

For the code word 1011

a  c  d  f  a

even odd

2018.10.20.

5

9

CHARACTERISTICS

• Because there are two input conditions, two connecting

 lines emanate from each node.

• The network returns to its initial state after the fourth cycle.

• The operation of the network is cyclic, the length of the

 period is four cycles.

10

STATE TRANSITION TABLE AND

DIAGRAM

 even odd

2018.10.20.

6

11

THE NUMBER OF INTERNAL STATES

AND THEIR ENCODING

• Total number of internal states: seven

• Three flip-flops (Q1, Q2, Q3) are necessary and

 enough for the encoding.

• The actual state encoding greatly influences the

 complexity and structure of the network.

• Here we use the final (optimal) state encoding.

12

STATE ENCODING

• In the firs row, we make use of

the redundancy.

• To the states in the same level

of the state transition diagram,

the same Q1 and Q2 codes are

ascribed.

• Q1, Q2: cycle counters.

• Q3: indicates whether the

system is in the even or on the

odd branch of the state transition

diagram.

2018.10.20.

7

13

STATE FUNCTIONS AND THE OUTPUT

FUNCTION

14

STATE FUNCTIONS AND THE OUTPUT

FUNCTION

2018.10.20.

8

15

STATE FUNCTIONS AND THE OUTPUT

FUNCTION

Q1
n+1 = 4(2,3,6,7,10,11,14,15);

Q2
n+1 = 4(0-3,8-12);

Q3
n+1 = 4(3,7,8,9,10); x:(4,5,12,13);

Zn = 4(5,12); x:(0-3,6-11,14,15);

The weighing of

the variables:

Xn 8

Q1
n 4

Q2
n 2

Q3
n 1

16

EXCITATION TABLE

OF THE JK FLIP-FLOP

The logic synthesis is based on the excitation table of the flip-

flop chosen for the implementation.

 Qn  Qn+1 J K

 ——————————————

 0  0 0 X

 0  1 1 X

 1  0 X 1

 1  1 X 0

2018.10.20.

9

17

CONTROL OF FLIP-FLOP Q1

 _

 K1 = Q2 J1 = Q2

Note the role of the don’t care terms in the minimization.

18

CONTROL OF FLIP-FLOP Q2

 _

 K2 = Q1 J2 = Q1

Due to the proper state-encoding, the X input variable is not

present in the control equations of Q1 és Q2 .These two flip-

flops act as cycle counter.

2018.10.20.

10

19

CONTROL OF FLIP-FLOP Q3

 _ _ _

 K3 = X Q2 + X Q2 = X  Q2 J3 = X

The X input is among the variables controlling the flip-flop. The

state of Q3 will represent the actual parity. Q3 will “remember”

then parity of the input sequence.

20

THE OUTPUT FUNCTION Z

Note the chessboard pattern!

This implies XOR function:

 _ _

Z = X Q3 + X Q3 =

 = X  Q3

2018.10.20.

11

21

THE LOGIC DIAGRAM OF THE PARITY

CHECK CIRCUIT

cycle counter

 4th cycle

22

IMPLEMENTATION ALTERNATIVE USING

D FLIP-FLOPS

 _

 D1 = Q2 D2 = Q1

 _ _ _

 D3 = X Q1 + X Q3 + X Q1 Q2

Due to the ”clever” sate encoding, the control of the two flip-

flops acting as the cycle counter corresponds to the usual

one. However the control network of the third flip-flop is

somewhat more complex than in the former implementation.

2018.10.20.

12

23

IMPLEMENTATION USING T FLIP-FLOPS

The feedback network is somewhat more complicated than

in the case of D flip-flops.

Main reason: Counting in Gray code with T flip-flops needs

more gates for the feedback.

Perhaps somebody might check a design with T flip-flops,

the cycle counter operating in the simple binary code…

8-BIT PARITY INDICATOR

24

Generalization to 8 bit s is straightforward.

Design procedure and the state transition diagram is similar.

There will be 15 states, therefore four flip-flops are

necessary. If the encoding is the same as previously, then

three FFs form the cycle counter, and the fourth will store the

information concerning the parity.

2018.10.20.

13

SYNCHRONOUS COUNTER

DESIGN EXAMPLE AND CASE STUDY

25

Consider the synthesis of a 4-bit up-counter in Gray-code

using D flip-flops.

A Gray-code counter using D flip-flops can be designed by

finding the appropriate function of each D terminal. Given a

present state of the counter, the D terminal of each flip-flop

should be made equal to the value of the same bit position

of the next-number in the Gray code.

4-BIT GRAY CODE COUNTER:

CONCEPTUAL DIAGRAM

26

Q3

D3

Q2

D2

Q1

D1

Q0

D3

Combinational feedback circuit

4

Clock

2018.10.20.

14

STATE TRANSITION TABLE

27

Minterm

index

Q3n Q2n Q1n Q0n Q3n+1

D3

Q2 n+1

D2

Q1 n+1

D1

Q0 n+1

D0

0

1

3

2

0

0

0

0

0

0

0

0

0

0

1

1

0

1

1

0

0

0

0

0

0

0

0

1

0

1

1

1

1

1

0

0

6

7

5

4

0

0

0

0

1

1

1

1

1

1

0

0

0

1

1

0

0

0

0

1

1

1

1

1

1

0

0

0

1

1

0

0

12

13

15

14

1

1

1

1

1

1

1

1

0

0

1

1

0

1

1

0

1

1

1

1

1

1

1

0

0

1

1

1

1

1

0

0

10

11

9

8

1

1

1

1

1

1

1

0

1

1

0

0

0

1

1

0

1

1

1

0

0

0

0

0

1

0

0

0

1

1

0

0

KARNAUGH MAPPING

28

D3 D2

2018.10.20.

15

KARNAUGH MAPPING

29

D1 D0

FLIP-FLOP CONTROL EQUATIONS

30

 __ __

Q3n+1 = D3 = Q3Q0 + Q3Q1 + Q2Q1Q0

 __ __ __

Q2n+1 = D2 = Q2Q1 + Q2Q0 + Q3Q1Q0

 __ __ __

Q1n+1 = D1 = Q1Q0 +Q3Q2Q0 + Q3Q2Q0

 __ __ __ __ __ __

Q0n+1 = D0 = Q3Q2Q1 +Q3Q2Q1 +Q3Q2Q1 +Q3Q2Q1

Implementation options: two-level AND-OR (13 AND, 4 OR)

in modular logic or PLA, or two-level NAND-NAND in

modular logic, or PROM.

2018.10.20.

16

FLIP-FLOP CONTROL EQUATIONS

31

Design alternative: D1 and D0 controls can be implemented in

AND-OR-XOR LOGIC too.

 __ __ __

Q1n+1 = D1 = Q1Q0 +Q3Q2Q0 + Q3Q2Q0 =

 __ __

 Q1Q0 + (Q3Q2)Q0

 __ __ __ __ __ __

Q0n+1 = D0 = Q3Q2Q1 +Q3Q2Q1 +Q3Q2Q1 +Q3Q2Q1 =

 __

 Q3Q2Q1

Gives a three-level combinational network (7 AND, 3 OR, 2

XOR, and 1 INV).

UP/DOWN 3-BIT GRAY CODE COUNTER

32

State transition diagram

Next-state table

UP/DOWN control input: Y

2018.10.20.

17

UP/DOWN 3-BIT GRAY CODE COUNTER

33

Variables: Q2, Q1, Q0, and Y

UP/DOWN 3-BIT GRAY CODE COUNTER

34

Logic expressions for flip-flop control

2018.10.20.

18

UP/DOWN 3-BIT GRAY CODE COUNTER

35

4-BIT BI-DIRECTIONAL

GRAY CODE COUNTER

36

Features of design provided by one of the students of my

previous course.

Compared designs using D or T flip-flops.

Using T flip-flops, some several common terms could be

realized by XOR gate or XOR gate and inverter, leading to

further simplification of the feedback circuit.

Complexity: 16 NAND gates (2,3 or 4 inputs), 2 XOR gates

and 2 inverters.

Estimated the maximum clock frequency of the counter when

using high speed CMOS logic components.

2018.10.20.

19

STATE MACHINE WITH MEMORY

37
The standard state machine configuration

STATE MACHINE WITH MEMORY

38
Toward a microprocessor: Replacing the combinational

logic with a memory.

2018.10.20.

20

STATE MACHINE WITH MEMORY

39

To start with, let's assume a state machine with no external

inputs or outputs. Then the state machine's present state (PS)

becomes an address which is input to the ROM. The data

word stored in the ROM at that address then corresponds to

the next state (NS). This correspondence had been initially

programmed into the ROM, just as the specic combina-

tional logic in an old state machine had to be pre-determined.

So if the PS as defined at the data register are, for example,

1001, then the ROM data word at address 1001 will be the NS

which is then passed back to the register. When there are also

external inputs, as there will be for most anything of interest,

these are combined with the PS bits to form a longer address

for the ROM. Similarly, any external outputs are combined with

the NS bits in the data word.

EXAMPLE: DIVIDE BY 2 OR 3 COUNTER

40

Design a counter which either divides by 2 or by 3,

depending upon the value of an external input bit P.

3 states are required, use 2 bits, describe four states:

 A 00

 B 01

 C 10

 D 11

 P = 0 divide by 2

 P = 1 divide by 3

Output R =1 if present state is B,

otherwise R = 0.

State D is normally unused.

2018.10.20.

21

DIVIDE BY 2 OR 3 COUNTER:

STATE TRANSITION DIAGRAM

41

A B

C D

0,1

1

0,1

0

0,1

EXAMPLE: DIVIDE BY 2 OR 3 COUNTER

42

ROM: 3 address bits (2

for PS, 1 for input P).

Data word length 3 bit (2

for BS 1 for output R).

ROM size 8x3=24 bits.

2018.10.20.

22

EXAMPLE: DIVIDE BY 2 OR 3 COUNTER

43

The programming of the ROM is

straightforward and can be read

directly from the truth table.

Addresses are encoded as PQ1Q0

and the data words as D1D0R. For

example take the 5th row of the truth

table. The address would be 100

and the data word at this address

would be 010. The remaining bits of

the ROM would be programmed in

the same way. So one would initially

”burn in" these bit patterns into the

ROM and put it into the circuit.

GENERALIZATION TO

MICROPROCESSORS

44

A state machine with zero input bits can perform a counter-

like function, but not more: its next state is limited to be a

function only of the present state. A single input bit can be

used to ”program" the state machine to behave in one of

two possible ways for each present state, as was illustrated

with the examples.

E.g. in an up/down counter.

On the other hand, with n inputs, the machine can perform

2n different operations. So, e.g. with n = 8 the machine can

perform one of 256 different operations on each clock cycle.

This allows for tremendous potential and flexibility.

2018.10.20.

23

GENERALIZATION TO

MICROPROCESSORS

45

The input bits can themselves be sequenced and stored

externally in a specific sequence which is then applied step by

step to the state machine inputs on successive clock cycles.

Such a stored sequence of operations is a program and the

256 operations represent the programming operations.

Here we have essentially configured a simple micro-processor.

The inputs and outputs would need to be connected to buses

(via 3-state buffers where appropriate), which in turn are also

connected to memories which store the program and any

output or input data. The buses would also be connected to

various input/output devices, mass storage devices, etc.

46

SYNTHESIS OF SYNCHRONOUS CIRCUITS:

RECAPITULATION

1. Constructing the state transition diagram.

2. Selection or specifying the encoding of the states.

3. Constructing the state transition tables. It gives for each

 cycle the next-state of each flip-flop in the function of the

 previous states of all flip-flops and in the function of the

 control conditions (up/down).

4. Selection or specifying the type of flip-flop used in the

 implementation. Excitation table of the flip-flop type.

5. Determination of the logic functions of the control input(s)

 of each flip-flop. Performing the necessary or appropriate

 minimization.

6. Selection of the types of logic gates to be used and

 implementation of the feedback/control network.

2018.10.20.

24

47

END OF THIS PART

Supplement follows: Traffic light control design example

and case study.

TRAFFIC LIGHTS DESIGN EXAMPLE

48

Design a synchronous digital circuit, a Moore machine,

which operates a traffic light at two types of road crossing.

2018.10.20.

25

TRAFFIC LIGHTS DESIGN EXAMPLE

49

There are six lights to operate. The Red, Amber, and Green

lights in the North-South direction will be designated as R1,

A1, G1. Similarly, the lights in the East-West direction will

be called R2, A2, and G2. When the digital signals are in

the Logic-1 state they turn their respective lights on,

otherwise the lights are off.

A digital clock signal will be supplied

and at each clock pulse the lights

should change according the

schedule given above. The design

of the circuit that produces the

clock pulses at appropriate times

will not be considered here.

TRAFFIC LIGHTS DESIGN EXAMPLE

50

There are two types of road crossing: quiet crossings that

use a simple sequence, and busy crossings require a

longer (delayed green) sequence. Some junctions may use

the busy sequence during the day and the quiet sequence

at night. One digital input signal called J (for junction type)

will indicate whether the road crossing is considered quiet.

J=0 denotes a busy junction and J=1 a quiet one. Thus, we

have a one-input, six-output synchronous system to design.

2018.10.20.

26

FORMALIZATION OF THE PROBLEM

51

Most problems are first specified in a loose verbal form

which must be made more rigorous.

 A good first step in this direction is to determine the

number of states required.

Sometime the determination of the minimum number of

states may be very difficult. However, our problem is

simple enough to determine the states easily.

NUMBER OF STATES

52

Looking at the original specification, we see

that there are six states (light patterns) for

the busy intersection, and four states in the

quiet junction. However we do not need teen

states because all four states required for the

quiet junction are also used in the busy

junction. We need only six states. Let us

number them 1 to 6 as shown in the table.

2018.10.20.

27

NUMBER OF STATES

53

Two states (3 and 6) have exactly the same traffic light

outputs. Could they be merged as one state? The answer is

no, unfortunately, because the state after 3 is 4 while the

state after 6 is 1.

STATE TRANSITION DIAGRAM

54

The state transition

diagram is very simple. For

the busy junction the states

just cycle through in order.

For the quiet junction

states 3 and 6 are skipped.

The state transition

diagram is a finite state

machine model and now

represents a formal

specification of what the

circuit is required to do. (The outputs (lamp controls)

are ignored yet here.)

2018.10.20.

28

FLIP-FLOPS: TYPE AND NUMBER

55

Since the number of states is equal to six, the minimum

number of flip-flops, which can support six states, is

three.

The maximum number of flip-flops one may use is six

(one flip-flop per state), though this implementation

would clearly be wasteful and so we will use three D-type

flip-flops. There will be two unused states.

STATE ASSIGNMENTS

56

There are some heuristic rules for assigning states to flip-flop

outputs, but they are difficult to apply and do not guarantee a

minimum circuit.

One rule is to maximize the number of 1s. The idea is that a

large number of 1s may provide easier minimization in the

Karnaugh maps for the state sequencing logic. On this basis

we will not use the states 000 and 001. The rest of the flip-

flop outputs are assigned in order while constructing the

transition table.

2018.10.20.

29

STATE TRANSITION TABLE

57

MINIMIZATION ON KARNAUGH MAP

58

The next step is to determine the required logic expressions

for the three flip-flop inputs D1, D2, and D3.

2018.10.20.

30

59

EXAMPLE: MINIMIZATION OF D1

X X 1

1

X

1

1

X X

 1

X

1

Q2

Q1

Q3

J

COMPLETE MINIMIZATION

60

2018.10.20.

31

IMPLEMENTATION

61

Once the minimization has been done, we can replace the

”don’t care” outputs in the Karnaugh maps with the actual

values we will get out of the circuit. Any don’t care inside a

circle is replaced with 1, and any outside all circles is

replaced with 0.

We have now a completely defined a sequential circuit and

we should check whether the system behaves correctly

even if it starts from one of the unused states. A convenient

way of checking this is by constructing the complete

transition diagram in which the unused states 7 and 8 are

also included.

IMPLEMENTATION

62

The Karnaugh maps now have a value for each of the don’t

care states we used in the design, so we can rebuild the

state transition table from them and draw the finite state

machine that includes the unused states.

2018.10.20.

32

IMPLEMENTATION: DISASTER !

63
Disaster strikes ! The system can be stuck in state 3 if J = 1 !

PROBLEM ANALYSIS

64

Disaster strikes! If the J input is logic 1 (quiet crossing)

and the system finds itself in state 3, for example when

switched on, or when it changes from busy mode to

quiet mode, then it will be stuck in state 3. We have to

go back and change some ”don’t care” bit(s) to fix the

problem. This will mean revising our circles and the

minimal equations.

The problem occurs at Karnaugh map entry 1100.

Looking at the three maps, we can see that by changing

the 0 indicated for D3 to a 1 will cause the circuit to go to

state 4 from state 3 when the safe input is 1. This fixes

the problem and causes minimal damage (i.e. will add

one extra term to the expression).

2018.10.20.

33

REMEDY

65

Additional loop

OUTPUT CIRCUITS: LAMP CONTROLS

66

For each state we need to generate the signals that light

the correct traffic light bulbs. There are six such circuits

but fortunately they have three inputs only (Q1,Q2,Q3).

Their K-Maps can be filled out by the requirements of

lights to be either ON or OFF for each given state. Here

again we will start by ignoring the two unused states which

will provide ”don’t care” outputs to find the minimized

circuits. Again, filling out the K-maps with the selected 1s

and 0s will give us the actual operation of the lights for

states 7 and 8. We will have to look at these whether they

are safe. From the original specification we can fill in the

values for the bulb outputs.

2018.10.20.

34

FINAL CIRCUIT SPECIFICATION

67

In summary we have the following circuits to build. The

common terms are underlined. They need only be

implemented once in hardware.

FURTHER MODIFICATIONS: DIFFERENT

STATE ASSIGNMENTS

68

If we want to try to find a simpler overall circuit, we may try

different flip-flop assignments for the states. One idea is to

minimize the output circuitry. We could, for example, make

R1=Q1 and R2=Q2, if these simple assignments will give

us a correct complete state assignment. The third output,

Q3 has to be assigned such that all used states are

distinct. One possible set of assignments are shown below:

2018.10.20.

35

A DIFFERENT STATE ASSIGNMENT

69

The output circuits are quite a lot simpler and smaller, but of

course, we have to redesign the state sequencing logic

circuitry with the new flip-flop state assignments.

NEW STATE TABLES

70

The resulting circuit is simpler than the first one, and if we check

the don’t care states - which you can do as an exercise - it turns

out to be safe. The final state diagram and circuit looks like this:

2018.10.20.

36

FINAL CIRCUIT

71

REVISION QUESTIONS

72

1. Describe the main steps involved in the synthesis of

a synchronous sequential circuit/finite state machine.

2. Describe and illustrate with a simple example the

operation of a state machine with memory.

2018.10.20.

37

PROBLEMS AND EXERCISES

73

1. In a complete state machine, all possible transitions

between states of a finite state machine (FSM) should be

specified. Your state machine has two inputs, A and B, and

two states, S0 and S1. You are told that your FSM behaves as

follows:

The FSM moves from S0 to S1 if and only if A = 1.

The FSM moves from S1 to S0 if and only if A = 0 and B = 1.

Draw the complete state transition diagram of your FSM.

2. Analyze the operation of the type 7474 edge triggered D

flip-flop and give its full operational/truth table for

asynchronous and synchronous control.

PROBLEMS AND EXERCISES

74

3. Design a finite state machine which determines

whether the two 4-bit binary numbers arriving

simultaneously on the two inputs are equal or not. If not,

it should also indicate which is the greater. The code-

words in pairs arrive cyclically to the X and Y inputs of

the circuit. The MSBs arrive at first to the input.

4. Four-bit codewords representing normal BCD coded

decimal digits arrive cyclically to the X input of a

synchronous sequential circuit. The MSB arrives first.

Design a synchronous sequential circuit which indicates

with 1 on its Z output if the arriving 4-bit codeword

presumably representing a normal BCD digit is invalid.

2018.10.20.

38

PROBLEMS AND EXERCISES

75

5. Design a synchronous sequential circuit to control a

bottled drink vending machine. A bottle of drink costs

200 HUF. The machine accepts 50, 100, and 200 HUF

coins. When the amount of money inserted equals or

exceeds the price of the merchandize, the machine

vends a bottle and returns change if any, then waits for

the next transaction.

6. Design a synchronous counter according to the

specifications given below:

 Encoding: Excess-3 (Stibitz) code

 Counting direction: up or down, externally

 controllable

 Mode of operation: self-correcting (returns to the

 counting cycle from the invalid states).

76

END OF LECTURE

