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SYNTHESIS: GENERAL CONCEPTS  

Synchronous sequential circuits synthesis procedure 

 

 Word description of problem (hardest; art, not science) 

 Derive state diagram and state table 

 Minimize (moderately hard) 

 Assign states (very hard) 

 Produce state and output transition tables 

 Determine what FFs to use and find their excitation maps 

 Derive output equations/K-maps 

 Obtain the logic diagram 

STATE MACHINE 

4 General scheme of a state machine. 
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STATE MACHINE SYNTHESIS 

5 

The strategy for applying this scheme to a given problem 

consists of the following: 

 

1. Identify the number of required states, m. The number 

of bits of memory (e.g. number of flip-flops) required to 

specify the m states is at minimum n = log2(m). 

 

2. Make a state diagram which shows all states, inputs, 

and outputs. 

 

3. Make a truth table for the logic section. The table will 

have n + k inputs and n + m outputs. 

 

4. Implement the truth table using combinational logic 

techniques. 
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SYNTHESIS OF SEQUENTIAL CIRCUIT:  

A CASE STUDY 
• Synthetize a network which determines the parity of a four 

  bit serial  code word. 

    

• Should indicate the parity of the incoming code word  

  after receiving the 4-th bit as 

 - 1 if the parity is odd, 

 - 0 if the parity is even. 

 

• The output is irrelevant (don’t care) during the first three  

  cycle of the period.   

This design project being rather elementary will be skipped 

now, however it can be read in the Moodle files. 

Instead of it a more complex problem, a traffic control system 

will be presented and discussed. 
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4-BIT PARITY INDICATOR 

• When checking the parity the order of the bits is irrelevant. 

 

• Construct the state transition diagram of the  

  Mealy-machine. 

Mealy 

machine 
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4-BIT PARITY INDICATOR:  

STATE TRANSITION DIAGRAM 

left  (s)- even 

right (n) - odd 

 

red - incoming bit 0 

green - incoming bit 1 

 

The output Z is defined only 

in the fourth cycle, otherwise 

it is ”don’t care”. 

 

For the code word 1011    

a  c  d  f  a 

even           odd 
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CHARACTERISTICS 

• Because there are two input conditions, two  connecting  

  lines emanate from each node. 

 

• The network returns to its initial state after the fourth cycle. 

 

• The operation of the network is cyclic, the length of the  

  period is four cycles.  

 

 

10 

STATE TRANSITION TABLE AND 

DIAGRAM 

 even        odd 
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THE NUMBER OF INTERNAL STATES 

AND THEIR ENCODING 

• Total number of internal states: seven 

 

• Three flip-flops (Q1, Q2, Q3) are necessary and  

  enough for the encoding. 

 

• The actual state encoding greatly influences the  

  complexity and structure of the network. 

 

• Here we use the final (optimal) state encoding.  

12 

STATE ENCODING 

• In the firs row, we make use of 

the redundancy.  

• To the states in the same level 

of the state transition diagram, 

the same Q1 and Q2 codes are 

ascribed. 

• Q1, Q2: cycle counters. 

• Q3: indicates whether the 

system is in the even or on the 

odd branch of the state transition 

diagram.  
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STATE FUNCTIONS AND THE OUTPUT 

FUNCTION 

14 

STATE FUNCTIONS AND THE OUTPUT 

FUNCTION 
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STATE FUNCTIONS AND THE OUTPUT 

FUNCTION 

Q1
n+1 = 4(2,3,6,7,10,11,14,15); 

 

Q2
n+1 = 4(0-3,8-12); 

 

Q3
n+1 = 4(3,7,8,9,10); x:(4,5,12,13); 

 

Zn   = 4(5,12); x:(0-3,6-11,14,15); 

The weighing of 

the variables: 

 

Xn 8 

Q1
n 4 

Q2
n 2 

Q3
n 1 

16 

EXCITATION TABLE  

OF THE JK FLIP-FLOP 

The logic synthesis is based on the excitation table of the flip-

flop chosen for the implementation. 

 

  Qn  Qn+1  J K 

  —————————————— 

  0      0  0 X 

  0      1  1 X 

  1      0  X 1 

  1       1  X 0 
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CONTROL OF FLIP-FLOP Q1 

 

 

          _ 

  K1 = Q2  J1 = Q2 
 
Note the role of the don’t care terms in the minimization. 

18 

CONTROL OF FLIP-FLOP Q2 

 

 

                                     _ 

  K2 = Q1  J2 = Q1 
 
Due to the proper state-encoding, the X input variable is not 

present in the control equations of Q1 és  Q2 .These two flip-

flops act as cycle counter.  
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CONTROL OF FLIP-FLOP Q3 

 

 

         _  _                        _ 

 K3 = X Q2 + X Q2 = X  Q2   J3 = X 

 
The X input is among the variables controlling the flip-flop. The 

state of Q3 will represent the actual parity. Q3 will “remember” 

then parity of the input sequence. 

20 

THE OUTPUT FUNCTION Z 

 

 

 

Note the chessboard pattern! 

This implies XOR function: 

 

      _              _ 

Z = X Q3 + X Q3 = 

 

 = X  Q3  
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THE LOGIC DIAGRAM OF THE PARITY 

CHECK CIRCUIT 
 

 

 

cycle counter 

 4th cycle 

22 

IMPLEMENTATION ALTERNATIVE USING 

D FLIP-FLOPS 

            _ 

 D1 = Q2  D2 = Q1  

 

             _          _      _ 

 D3 = X Q1 + X Q3 + X Q1 Q2  

 

Due to the ”clever” sate encoding, the control of the two flip-

flops acting as the cycle counter corresponds to the usual 

one. However the control network of the third flip-flop is 

somewhat more complex than in the former implementation.  
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IMPLEMENTATION USING T FLIP-FLOPS 

The feedback network is somewhat more complicated  than 

in the case of D flip-flops.  

Main reason: Counting in Gray code with T flip-flops needs  

more gates for the feedback. 

 

Perhaps somebody might check a design  with T flip-flops, 

the cycle counter  operating in the simple binary code… 

 

 

 

8-BIT PARITY INDICATOR  

24 

Generalization to 8 bit s is straightforward. 

 

Design procedure and the state transition diagram is similar. 

 

There will be 15 states, therefore four flip-flops are 

necessary. If the encoding is the same as previously, then 

three FFs form the cycle counter, and the fourth will store the 

information concerning the parity. 
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SYNCHRONOUS COUNTER  

DESIGN EXAMPLE AND CASE STUDY 

25 

Consider  the synthesis of a 4-bit  up-counter in Gray-code 

using D flip-flops. 

 

A Gray-code counter using D flip-flops can be designed by 

finding the appropriate function of each D terminal. Given a 

present state of the counter, the D terminal of each flip-flop 

should be made equal to the value of the same bit position 

of the next-number in the Gray code. 

4-BIT GRAY CODE COUNTER: 

CONCEPTUAL DIAGRAM 

26 

Q3 

 

D3 

 

Q2 

 

D2 

 

Q1 

 

D1 

Q0 

 

D3 

Combinational feedback circuit 

4 

Clock 
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STATE TRANSITION TABLE 

27 
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KARNAUGH MAPPING 

28 

D3      D2 
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KARNAUGH MAPPING 

29 

D1                                            D0 

FLIP-FLOP CONTROL EQUATIONS 

30 

                                                      __ __ 

Q3n+1 = D3 = Q3Q0 + Q3Q1 + Q2Q1Q0 

 

                           __                   __     __ 

Q2n+1 = D2 = Q2Q1 + Q2Q0 + Q3Q1Q0 

 

                           __    __ __ 

Q1n+1 = D1 = Q1Q0 +Q3Q2Q0 + Q3Q2Q0 

 

                      __ __ __             __    __                   __ 

Q0n+1 = D0 = Q3Q2Q1 +Q3Q2Q1 +Q3Q2Q1 +Q3Q2Q1 

 

Implementation options: two-level AND-OR (13 AND, 4 OR) 

in modular logic or PLA, or  two-level NAND-NAND in 

modular logic, or PROM. 
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FLIP-FLOP CONTROL EQUATIONS 

31 

Design alternative: D1 and D0 controls can be implemented in 

AND-OR-XOR LOGIC too. 

 

                           __    __ __ 

Q1n+1 = D1 = Q1Q0 +Q3Q2Q0 + Q3Q2Q0 =  

       __              __ 

  Q1Q0 + (Q3Q2)Q0 

 

                      __ __ __             __    __                   __ 

Q0n+1 = D0 = Q3Q2Q1 +Q3Q2Q1 +Q3Q2Q1 +Q3Q2Q1 = 

           __ 

  Q3Q2Q1 

 

Gives a three-level combinational network (7 AND, 3 OR, 2 

XOR, and 1 INV). 

UP/DOWN 3-BIT GRAY CODE COUNTER 

32 

State transition diagram 

 

Next-state table 

      _____ 

UP/DOWN control input: Y 
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UP/DOWN 3-BIT GRAY CODE COUNTER 

33 

Variables: Q2, Q1, Q0, and Y 

UP/DOWN 3-BIT GRAY CODE COUNTER 

34 

Logic expressions for flip-flop control 
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UP/DOWN 3-BIT GRAY CODE COUNTER 

35 

4-BIT BI-DIRECTIONAL  

GRAY CODE COUNTER 

36 

Features of design provided by one of the students of my 

previous course.  

 

Compared designs using D or T flip-flops. 

 

Using T flip-flops, some several common terms could be 

realized by XOR gate or  XOR gate and inverter, leading to 

further simplification of the feedback circuit. 

 

Complexity: 16 NAND gates (2,3 or 4 inputs), 2 XOR gates 

and 2 inverters. 

 

Estimated the maximum clock frequency of the counter when 

using high speed CMOS logic components. 
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STATE MACHINE WITH MEMORY 

37 
The standard state machine configuration 

STATE MACHINE WITH MEMORY 

38 
Toward a microprocessor: Replacing the combinational 

logic with a memory. 
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STATE MACHINE WITH MEMORY 

39 

To start with, let's assume a state machine with no external 

inputs or outputs. Then the state machine's present state (PS) 

becomes an address which is input to the ROM. The data 

word stored in the ROM at that address then corresponds to 

the next state (NS). This correspondence had been initially 

programmed into the ROM, just as the specic combina- 

tional logic in an old state machine had to be pre-determined. 

So if the PS as defined at the data register are, for example, 

1001, then the ROM data word at address 1001 will be the NS 

which is then passed back to the register. When there are also 

external inputs, as there will be for most anything of interest, 

these are combined with the PS bits to form a longer address 

for the ROM. Similarly, any external outputs are combined with 

the NS bits in the data word. 

EXAMPLE: DIVIDE BY 2 OR 3 COUNTER 

40 

Design a counter which either divides by 2 or by 3, 

depending upon the value of an external input bit P. 

3 states are required, use 2 bits, describe four states: 

 

 A 00 

 B 01 

 C 10 

 D 11 

 

 P = 0   divide by 2 

 P = 1  divide by 3 

 

Output R =1 if present state is B,  

otherwise R = 0. 

State D is normally unused. 
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DIVIDE BY 2 OR 3 COUNTER:  

STATE TRANSITION DIAGRAM 

41 

A B 

C D 

0,1 

1 

0,1 

0 

0,1 

EXAMPLE: DIVIDE BY 2 OR 3 COUNTER 

42 

ROM: 3 address bits (2 

for PS, 1 for input P). 

Data word length 3 bit (2 

for BS 1 for output R). 

ROM size 8x3=24 bits. 
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EXAMPLE: DIVIDE BY 2 OR 3 COUNTER 

43 

The programming of the ROM is 

straightforward and can be read 

directly from the truth table. 

Addresses are encoded as PQ1Q0 

and the data words as D1D0R. For 

example take the 5th row of the truth 

table. The address would be 100 

and the data word at this address 

would be 010. The remaining bits of 

the ROM would be programmed in 

the same way. So one would initially 

”burn in" these bit patterns into the 

ROM and put it into the circuit. 

GENERALIZATION TO 

MICROPROCESSORS 

44 

A state machine with zero input bits can perform a counter-

like function, but not more: its next state is limited to be a 

function only of the present state. A single input bit can be 

used to ”program" the state machine to behave in one of 

two possible ways for each present state, as was illustrated 

with the examples.  

 

E.g. in an up/down counter. 

 

On the other hand, with n inputs, the machine can perform 

2n different operations. So, e.g. with n = 8 the machine can 

perform one of 256 different operations on each clock cycle. 

This allows for tremendous potential and flexibility.  
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GENERALIZATION TO 

MICROPROCESSORS 

45 

The input bits can themselves be sequenced and stored 

externally in a specific sequence which is then applied step by 

step to the state machine inputs on successive clock cycles. 

Such a stored sequence of operations is a program and the 

256 operations represent the programming operations.  

 

Here we have essentially configured a simple micro-processor. 

The inputs and outputs would need to be connected to buses 

(via 3-state buffers where appropriate), which in turn are also 

connected to memories which store the program and any 

output or input data. The buses would also be connected to 

various input/output devices, mass storage devices, etc. 

46 

SYNTHESIS OF SYNCHRONOUS CIRCUITS: 

RECAPITULATION 

1. Constructing the state transition diagram. 

2. Selection or specifying the encoding of the states. 

3. Constructing the state transition tables. It gives for each  

    cycle the next-state of each flip-flop in the function of the  

    previous states of all flip-flops and in the function of the  

    control conditions (up/down). 

4. Selection or specifying the type of flip-flop used in the  

    implementation. Excitation table of the flip-flop type.  

5. Determination of the logic functions of the control input(s) 

    of each flip-flop. Performing the necessary or appropriate 

    minimization. 

6. Selection of the types of logic gates to be used and  

    implementation of the feedback/control network. 
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END OF THIS PART 

 

 

 

 
Supplement follows: Traffic light control design example 

and case study. 

TRAFFIC LIGHTS DESIGN EXAMPLE 

48 

Design a synchronous digital circuit, a Moore machine, 

which operates a traffic light at two types of road crossing. 
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TRAFFIC LIGHTS DESIGN EXAMPLE 

49 

There are six lights to operate. The Red, Amber, and Green 

lights in the North-South direction will be designated as R1, 

A1, G1. Similarly, the lights in the East-West direction will 

be called R2, A2, and G2. When the digital signals are in 

the Logic-1 state they turn their respective lights on, 

otherwise the lights are off.  

 

A digital clock signal will be supplied 

and at each clock pulse the lights  

should change according the  

schedule given above. The design  

of the circuit that produces the  

clock pulses at appropriate times  

will not be considered here.  

TRAFFIC LIGHTS DESIGN EXAMPLE 

50 

There are two types of road crossing: quiet crossings that 

use a simple sequence, and busy crossings require a 

longer (delayed green) sequence. Some junctions may use 

the busy sequence during the day and the quiet sequence 

at night. One digital input signal called J (for junction type) 

will indicate whether the road crossing is considered quiet. 

J=0 denotes a busy junction and J=1 a quiet one. Thus, we 

have a one-input, six-output synchronous system to design. 
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FORMALIZATION OF THE PROBLEM 

51 

Most problems are first specified in a loose verbal form 

which must be made more rigorous. 

 

 A good first step in this direction is to determine the 

number of states required.  

 

Sometime the determination of the minimum number of 

states may be very difficult. However, our problem is 

simple enough to determine the states easily. 

NUMBER OF STATES 

52 

Looking at the original specification, we see 

that there are six states (light patterns) for 

the busy intersection, and four states in the 

quiet junction. However we do not need teen 

states because all four states required for the 

quiet junction are also used in the busy 

junction. We need only six states. Let us 

number them 1 to 6 as shown in the table. 
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NUMBER OF STATES 

53 

Two states (3 and 6) have exactly the same traffic light 

outputs. Could they be merged as one state? The answer is 

no, unfortunately, because the state after 3 is 4 while the 

state after 6 is 1. 

STATE TRANSITION DIAGRAM 

54 

The state transition 

diagram is very simple. For 

the busy junction the states 

just cycle through in order. 

For the quiet junction 

states 3 and 6 are skipped. 

The state transition 

diagram is a finite state 

machine model and now 

represents a formal 

specification of what the 

circuit is required to do. (The outputs (lamp controls) 

are ignored yet here.) 



2018.10.20. 

28 

FLIP-FLOPS: TYPE AND NUMBER 

55 

Since the number of states is equal to six, the minimum 

number of flip-flops, which can support six states, is 

three.  

 

The maximum number of flip-flops one may use is six 

(one flip-flop per state), though this implementation 

would clearly be wasteful and so we will use three D-type 

flip-flops. There will be two unused states. 

STATE ASSIGNMENTS 

56 

There are some heuristic rules for assigning states to flip-flop 

outputs, but they are difficult to apply and do not guarantee a 

minimum circuit.  

 

One rule is to maximize the number of 1s. The idea is that a 

large number of 1s may provide easier minimization in the 

Karnaugh maps for the state sequencing logic. On this basis 

we will not use the states 000 and 001. The rest of the flip-

flop outputs are assigned in order while constructing the 

transition table. 
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STATE TRANSITION TABLE 

57 

MINIMIZATION ON KARNAUGH MAP 

58 

The next step is to determine the required logic expressions 

for the three flip-flop inputs D1, D2, and D3. 
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EXAMPLE: MINIMIZATION OF D1 

X X 1 

1 

X 

1 

1 

X X 

   1 

X 

1 

Q2 

Q1 

Q3 

J 

COMPLETE MINIMIZATION 

60 
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IMPLEMENTATION 

61 

Once the minimization has been done, we can replace the 

”don’t care” outputs in the Karnaugh maps with the actual 

values we will get out of the circuit. Any don’t care inside a 

circle is replaced with 1, and any outside all circles is 

replaced with 0.  

 

We have now a completely defined a  sequential circuit and 

we should check whether the system behaves correctly 

even if it starts from one of the unused states. A convenient 

way of checking this is by constructing the complete 

transition diagram in which the unused states 7 and 8 are 

also included. 

IMPLEMENTATION 

62 

The Karnaugh maps now have a value for each of the don’t 

care states we used in the design, so we can rebuild the 

state transition table from them and draw the finite state 

machine that includes the unused states. 
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IMPLEMENTATION: DISASTER ! 

63 
Disaster strikes !  The system can be stuck in state 3 if J = 1 ! 

PROBLEM ANALYSIS 

64 

Disaster strikes! If the J input is logic 1 (quiet crossing) 

and the system finds itself in state 3, for example when 

switched on, or when it changes from busy mode to 

quiet mode, then it will be stuck in state 3. We have to 

go back and change some ”don’t care” bit(s) to fix the 

problem. This will mean revising our circles and the 

minimal equations. 

 

The problem occurs at Karnaugh map entry 1100. 

Looking at the three maps, we can see that by changing 

the 0 indicated for D3 to a 1 will cause the circuit to go to 

state 4 from state 3 when the safe input is 1. This fixes 

the problem and causes minimal damage (i.e. will add 

one extra term to the expression). 
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REMEDY 

65 

Additional loop 

OUTPUT CIRCUITS: LAMP CONTROLS 

66 

For each state we need to generate the signals that light 

the correct traffic light bulbs. There are six such circuits 

but fortunately they have three inputs only (Q1,Q2,Q3). 

Their K-Maps can be filled out by the requirements of 

lights to be either ON or OFF for each given state. Here 

again we will start by ignoring the two unused states which 

will provide ”don’t care” outputs to find the minimized 

circuits. Again, filling out the K-maps with the selected 1s 

and 0s will give us the actual operation of the lights for 

states 7 and 8. We will have to look at these whether they 

are safe. From the original specification we can fill in the 

values for the bulb outputs. 
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FINAL CIRCUIT SPECIFICATION 

67 

In summary we have the following circuits to build. The 

common terms are underlined. They need only be 

implemented once in hardware. 

FURTHER MODIFICATIONS: DIFFERENT 

STATE ASSIGNMENTS 

68 

If we want to try to find a simpler overall circuit, we may try 

different flip-flop assignments for the states. One idea is to 

minimize the output circuitry. We could, for example, make 

R1=Q1 and R2=Q2, if these simple assignments will give 

us a correct complete state assignment. The third output, 

Q3 has to be assigned such that all used states are 

distinct. One possible set of assignments are shown below: 
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A DIFFERENT STATE ASSIGNMENT 

69 

The output circuits are quite a lot simpler and smaller, but of 

course, we have to redesign the state sequencing logic 

circuitry with the new flip-flop state assignments. 

NEW STATE TABLES 

70 

The resulting circuit is simpler than the first one, and if we check 

the don’t care states - which you can do as an exercise - it turns 

out to be safe. The final state diagram and circuit looks like this: 
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FINAL CIRCUIT 

71 

REVISION QUESTIONS 

72 

1. Describe the main steps involved in the synthesis of  

a synchronous sequential circuit/finite state machine. 

 

2. Describe and illustrate with a simple example the 

operation of  a state machine with memory. 
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PROBLEMS AND EXERCISES 

73 

1. In a complete state machine, all possible transitions 

between states of a finite state machine (FSM) should be 

specified. Your state machine has two inputs, A and B, and 

two states, S0 and S1. You are told that your FSM behaves as 

follows: 

The FSM moves from S0 to S1 if and only if A = 1. 

The FSM moves from S1 to S0 if and only if A = 0 and B = 1. 

Draw the complete state transition diagram of your FSM. 

 

2. Analyze the operation of the type 7474 edge triggered D 

flip-flop and give its full operational/truth table for 

asynchronous and synchronous control.  

PROBLEMS AND EXERCISES 

74 

3. Design a finite state machine which determines 

whether the two 4-bit binary numbers arriving 

simultaneously on the two inputs are equal or not. If not, 

it should also indicate which is the greater. The code-

words in pairs arrive cyclically to the X and Y inputs of 

the circuit. The MSBs arrive at first to the input. 

 

4. Four-bit codewords representing normal BCD coded 

decimal digits arrive cyclically to the X input of a 

synchronous sequential circuit. The MSB arrives first. 

Design a synchronous sequential circuit which indicates  

with 1 on its Z output if the arriving 4-bit codeword 

presumably representing a normal BCD digit is invalid.  
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PROBLEMS AND EXERCISES 

75 

5.  Design a synchronous sequential circuit to control a 

bottled drink vending machine. A bottle of drink costs 

200 HUF. The machine accepts 50, 100, and 200 HUF 

coins. When the amount of money inserted equals or 

exceeds the price of the merchandize, the machine 

vends a bottle and returns change if any, then waits for 

the next transaction.  

 

6. Design a synchronous counter according to the 

specifications given below: 

 Encoding: Excess-3 (Stibitz) code 

 Counting direction: up or down, externally  

  controllable 

 Mode of operation: self-correcting (returns to the 

  counting cycle from the invalid states). 

76 

         
END OF LECTURE 

 

 

 

 


