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10. LECTURE: ARITMETHIC CIRCUITS, ALU 

 

 

 
1. Basic arithmetic circuits and building blocks 

 

2. Binary adders 

 

3. BCD adders 

 

4. Binary multipliers 
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ARITHMETIC ELEMENTS 

• Arithemtic elements- perform various arithemetic 

operatios. 

 

• Operations – performed between operands. 

 

• Operands – from memory, from internal temporary 

storage elements (registers).   

 

• Result – to internal temporary storage elements or to 

other type of memory.  

ARITHMETIC CIRCUITS:  

BASIC BUILDING BLOCKS 

We will discuss those combinational logic building blocks 

that can be used to perform addition and subtraction 

operations on binary numbers. Addition and subtraction are 

the two most commonly used arithmetic operations, as the 

other two, namely multiplication and division, are 

respectively the processes of repeated addition and 

repeated subtraction. 

 

We will begin with the basic building blocks that form the 

basis of all hardware used to perform the aforesaid 

arithmetic operations on binary numbers. These include 

half-adder, full adder, half-subtractor, full subtractor and 

controlled inverter. 
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Ai Bi Sum Cout 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 1 1 

Ai Bi Cin Sum Cout 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

CIRCUITS FOR BINARY ADDITION 

(RECAPITULATION …) 

• Half adder (add two 1-bit numbers) 

– Sum = Ai' Bi + Ai Bi' = Ai xor Bi 

– Cout = Ai Bi 

• Full adder (carry-in to cascade for multi-bit adders) 

– Sum = Ci xor A xor B 

– Cout = B Ci  +  A Ci  +  A B = Ci (A + B) + A B 
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FULL ADDER: BOOLEAN FUNCTIONS 

 

 

 

 

Sum        _ _           _    _          _ _       

 Si = AiBiCi-1 + AiBiCi-1 + AiBiCi-1 + AiBiCi-1  

 

Carry         _                _                 _ 

 Ci = AiBiCi-1 + AiBiCi-1 + AiBiCi-1 + AiBiCi-1  

 

      = AiBi + AiCi-1 + BiCi-1 = AiBi + (Ai + Bi)Ci-1  

 

      = AiBi + (A i Bi)Ci-1        

 

The sum can be expressed as a three-variable exclusive OR 

function (Si = AiBiCi). 

 

The carry is the three-variable majority function and can also 

be expressed in various other algebraic forms. 
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Cout = A B + Cin (A xor B) = A B + B Cin + A Cin 

A 
B 

Cin 
S 

A 

A 

B 

B 

Cin 
Cout 

A 

B 

A xor B 

Cin 

A xor B xor Cin 
Half 

Adder 

Sum 

Cout Cin (A xor B) A B 

Sum 

Cout 

Half 
Adder 

Sum 

Cout 

FULL ADDER IMPLEMENTATIONS 

• Standard approach 

– 6 gates 

– 2 XORs, 2 ANDs, 2 ORs 

 

 

 

• Alternative implementation 

– 5 gates 

– half adder is an XOR gate and AND gate 

– 2 XORs, 2 ANDs, 1 OR 
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FULL ADDER: GENERAL RELEVANCE 

The  full adder is the fundamental building block in many 

arithmetic circuits, such as adders and multipliers.  

 

Since these circuits strongly affect the overall performance 

in current digital ICs, their speed optimization is crucial in 

high performance applications, and typical applications 

require a tradeoff between power consumption and speed. 

 

In addition, as arithmetic circuits significantly contribute to 

the overall power budget, their power consumption 

reduction becomes the main objective to pursue in low-

power ICs used in portable electronic equipment. 
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HALF- AND FULL SUBTRACTOR 

The subtraction of two given binary numbers can be carried 

out by adding 2’s complement of the subtrahend to the 

minuend. This allows us to do a subtraction operation with 

adder circuits. 

 

However, we will also briefly look at the counterparts of 

half-adder and full adder circuits in the half-subtractor and full 

subtractor for direct implementation of subtraction operations 

using logic gates. 

 

HALF-SUBTRACTOR 

A half-subtractor is a combinational circuit that can be used 

to subtract one binary digit from another to produce a 

DIFFERENCE output and a BORROW output. The 

BORROW output here specifies whether a ‘1’ has been 

borrowed to perform the subtraction. 
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COMBINED HALF 

ADDER/SUBTRACTOR 

Control 0 ADD 

Control 1 SUBTRACT 

FULL SUBTRACTOR 

A full subtractor performs subtraction operation on two bits, 

a minuend and a subtrahend, and also takes into 

consideration whether a ‘1’ has already been borrowed by 

the previous adjacent lower minuend bit or not. As a result, 

there are three bits to be handled at the input of a full 

subtractor, namely the two bits to be subtracted and a 

borrow bit designated as Bin . There are two outputs, 

namely the DIFFERENCE output D and the BORROW 

output Bo. The BORROW output bit tells whether the 

minuend bit needs to borrow a ‘1’ from the next possible 

higher minuend bit. 
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FULL SUBTRACTOR 

Truth table of a full subtractor 

FULL SUBTRACTOR 

Logic implementation of a full subtractor with half-subtractors. 
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MULTIBIT ADDERS:  

BIT-SERIAL ADDER 

Functional diagram of the bit-serial adder. 

                      

 

 

OPERATION OF BIT-SERIAL ADDER 
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SERIAL ADDER WITH ACCUMULATOR 

0 1 0 1 

0 1 1 1 

1 1 0 0 

18 

4-BIT PARALLEL ADDER (SERIES CARRY 

PROPAGATION, RIPPLE CARRY) 

1+ 

y3  x3 

s3 

1+ 

y2  x2 

s2 

1+ 

y1  x1 

s1 

1+ 

y0  x0 

s0 

c0 

c4 

c3 c2 c1 

4 bit adder 

y3  x3 y2  x2 y1  x1 y0  x0 cin 

cout s3 s2 s1 s0 

Carry is propagated serially! 
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RIPPLE CARRY ADDER 

The full adder is for adding two operands that are only one bit 

wide. To add two operands that are, say four bits wide, we 

connect four full adders together in series. The resulting circuit 

is called a ripple carry adder for adding two 4-bit operands. 

 

 

 

 

 

 

The ripple-carry adder is slow because the carry-in for each full 

adder is dependent on the carry-out signal from the previous 

FA. So before FAi can output valid data, it must wait for FAi–1 to 

have valid data. 

20 

SUBTRACTION: 2S COMPLEMENT 

  5   0101 

+2 +0010 

  7   0111 

  5   0101 

-2  +1110 

  3 1 0011 

  2 0010 
-2  1101 1s complement 

-2  1110 2s complement 

addition 

subtraction 
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CONTROLLED INVERTER 

A controlled inverter is needed when an adder is to be used as 

a subtractor. Subtraction is addition of the 2’s complement of 

the subtrahend to the minuend. Thus, the first step towards  

implementation of a subtractor is to determine the 2’s 

complement of the subtrahend. And for this, one needs firstly to 

find 1’s complement. A controlled inverter is used to find 1’s 

complement. A one-bit controlled inverter is a two-input EX-OR 

gate with one of its inputs treated as a control input. 

Eight-bit controlled inverter 

22 

ADDITION AND SUBTRACTION 

 

Full Adder 

B A CIN
 

COUT
 SUM 

Full Adder 

B A CIN
 

COUT
 SUM 

Full Adder 

B A CIN
 

COUT
 SUM 

B1 A1 B0 A0 B2 A2 

CIN = 0  

Q1 Q0 Q2 

Full Adder   

B   A   C IN 
  

C OUT 
  SUM   

Full Adder   

B   A   C IN 
  

C OUT 
  SUM   

Full Adder   

B   A   C IN 
  

C OUT 
  SUM   

B 1   A 1   B 0   A 0   B 2   A 2   

C IN  = 1 
  

Q 1   Q 0   Q 2   

Addition 

 

Subtraction 
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ADD/SUBTRACT CIRCUIT 

 

Full Adder 

B A CIN
 

COUT
 SUM 

Full Adder 

B A CIN
 

COUT
 SUM 

Full Adder 

B A CIN
 

COUT
 SUM 

B1 A1 B0 A0 B2 A2 

Q1 Q0 Q2 

ADD/SUB 

BAQ

CBB

SA

BAQ

CBB

SA

INin

INin













1  &  

1/

0  &  

0/

0 1 1 

1 0 1 

1 1 0 

0 0 0 

Bn BIN(n) 
ADD/SUB 

XOR gates: controlled inverters  

24 

A B 

Cout 

Sum 

Cin 

0 1 

Add' 
Subtract 

A0 B0 B0' 

Sel 

Overflow 

A B 

Cout 

Sum 

Cin 

A1 B1 B1' 

Sel 

A B 

Cout 

Sum 

Cin 

A2 B2 B2' 

Sel 0 1 0 1 0 1 

A B 

Cout 

Sum 

Cin 

A3 B3 B3' 

Sel 

S3 S2 S1 S0 

4-BIT ADDER/SUBTRACTER 

Use an adder to do subtraction thanks to 2s complement 

representation 

A – B  =   A + (– B)   =   A + B' + 1 

Control signal selects B or 2s complement of B 
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RIPPLE CARRY ADDER 

The layout of a ripple carry adder is simple, which allows 

for fast design time, however, the ripple carry adder is 

relatively slow, since each full adder must wait for the carry 

bit from the previous full adder.  

 

From Cin to Cout 2 gates should be passed through. Ergo a 

32-bit adder requires 31 carry computations and the final 

sum calculation for a total of 31x2 + 1 = 63 gate delays. 

26 

PROPAGATION DELAY OF THE 

RIPPLE CARRY ADDER 

1+ 

y3  x3 

s3 

1+ 

y2  x2 

s2 

1+ 

y1  x1 

s1 

1+ 

y0  x0 

s0 

c0 

c4 

c3 c2 c1 

delay(3dt) 
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Cout = A B + Cin (A xor B) = A B + B Cin + A Cin 

A 
B 

Cin 
S 

A 

A 

B 

B 

Cin 
Cout 

DELAY IN THE 1-BIT FULL ADDER 

Standard layout 

6 gates 

2 XOR, 2 AND, 2 OR 

 

 

 

 

 

If  A, B and Cin arrive simultaneously, the sum S will be 

available after a delay of 2t, the carry out Cout after a delay 

of 3t! 

The delays with respect to the arrival of Cin are t and 2t 

respectively! 

A 

A 

B 

B 

Cin Cout 

@0 

@0 

@0 
@0 

@N 

@1 

@1 

@N+1 

@N+2 

late 
arriving 
signal 

two gate delays 
to compute Cout 

4 stage 
adder 

A0 
B0 

Cin 

S0 @2 

A1 
B1 

C1 @2 

S1 @3 

A2 
B2 

C2 @4 

S2 @5 

A3 
B3 

C3 @6 

S3 @7 
Cout @8 

RIPPLE-CARRY ADDERS:  

SERIAL CARRY PROPAGATION 

• Critical Delay 

– The propagation of carry from low to high order 

stages 

A 
B 

Cin 
S 
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CARRY LOOK-AHEAD ADDER 

Carry look-ahead adders reduce the computation time.  

They work creating propagate and generate signals (P and 

G) for each bit position, and using them the carries for each 

position are created. 

 

Some multi-bit adder architectures break the adder into 

blocks. It is possible to vary the length of these blocks 

based on the propagation delay of the circuits to optimize 

computation time. These block based adders include the 

carry bypass adder which will determine P and G for each 

block rather than each bit, and the carry select adder which 

pre-generates sum and carry values for either possible 

carry input  to the block.  

FULL ADDER: CARRY 

A B

Cout

Sum

Cin Full
adder

Co = A B + (A  B)Ci 

 

vagy 

 

Co = A B + (A + B)Ci 

 

Co = G + P Ci 
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CARRY-LOOKAHEAD LOGIC 
• Carry generate:  Gi = Ai Bi 

– Must generate carry when A = B = 1 

 

• Carry propagate:  Pi = Ai xor Bi 

– Carry-in will equal carry-out here 

 

• Sum and Cout can be re-expressed in terms of 

generate/propagate: 

– Si = Ai xor Bi xor Ci 

 = Pi xor Ci 

– Ci+1= Ai Bi + Ai Ci + Bi Ci 

 = Ai Bi + Ci (Ai + Bi) 

 = Ai Bi + Ci (Ai xor Bi) 

 = Gi + Ci Pi 

CARRY-LOOKAHEAD LOGIC 

• Re-express the carry logic as follows: 

– C1 = G0 + P0 C0 

– C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0 

– C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 

P0 C0 

– C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 

P1 G0                                                                              

+ P3 P2 P1 P0 C0 

 

• Each of the carry equations can be implemented with 

two-level logic 

– All inputs are now directly derived from data inputs and 

not from intermediate carries 

– this allows computation of all sum outputs to proceed 

in parallel 
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33 G3 

C0 C0 

C0 

C0 
P0 P0 

P0 

P0 

G0 
G0 

G0 

G0 
C1 

P1 

P1 

P1 

P1 

P1 

P1 G1 
G1 

G1 

C2 
P2 

P2 

P2 

P2 

P2 

P2 

G2 
G2 

C3 

P3 

P3 

P3 

P3 

C4 

Pi @ 1 gate delay 

Ci Si @ 2 gate delays 

Bi 
Ai 

Gi @ 1 gate delay increasingly complex 
logic for carries 

CARRY LOOK AHEAD 

IMPLEMENTATION 

Adder with propagate and generate outputs 

34 

A0 
B0 

Cin 

S0 @2 

A1 
B1 

C1 @2 

S1 @3 

A2 
B2 

C2 @4 

S2 @5 

A3 
B3 

C3 @6 

S3 @7 
Cout @8 

A0 
B0 

Cin 

S0 @2 

A1 
B1 

C1 @3 

S1 @4 

A2 
B2 

C2 @3 

S2 @4 

A3 
B3 

C3 @3 

S3 @4 

C4 @3 C4 @3 

CARRY LOOK AHEAD IMPLEMENTATION 

• Carry-lookahead logic generates individual carries 

– Sums computed much more quickly in parallel 

– However, cost of carry logic increases with more stages 
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4-BIT CARRY LOOKAHEAD ADDER CIRCUIT 

“carry-out”, not “c-zero” 

Total 26 gates, c.f. 4 standard full adders 4x6 = 24 gates 

74HC/HCT181 4-BIT ALU LOGIC DIAGRAM 
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CARRY LOOKAHEAD ADDERS 

• By adding more hardware, we reduced the number of levels in the 
circuit and sped things up. 

• We can “cascade” carry lookahead adders, just like ripple carry 
adders. (We’d have to do carry lookahead between the adders too.) 

• How much faster is this? 

– For a 4-bit adder, not much. There are 4 gates in the longest 
path of a carry lookahead adder, versus 9 gates for a ripple carry 
adder. 

– But if we do the cascading properly, a 16-bit carry lookahead 
adder could have only 8 gates in the longest path, as opposed to 
33 for a ripple carry adder. 

– Newer CPUs these days use 64-bit adders. That’s 12 vs. 129 
gates! 

• The delay of a carry lookahead adder grows logarithmically with the 
size of the adder, while a ripple carry adder’s delay grows linearly. 

 

• The thing to remember about this is the trade-off between 
complexity and performance.  Ripple carry adders are simpler, but 
slower.  Carry lookahead adders are faster but more complex. 

38 

Lookahead Carry Unit 
C0 

P0 G0 P1 G1 P2 G2 P3 G3 C3 C2 C1 

C0 

P3-0 G3-0 

C4 

@3 @2 
@4 

@3 @2 
@5 

@3 @2 
@5 

@3 @2 

@4 

@5 @3 

@0 
C16 

A[15-12] B[15-12] 
C12 

S[15-12] 

A[11-8] B[11-8] 
C8 

S[11-8] 

A[7-4] B[7-4] 
C4 

S[7-4] 
@7 @8 @8 

A[3-0] B[3-0] 
C0 

S[3-0] 

@0 

@4 

4 4 

4 

P G 

4-bit Adder 

4 4 

4 

P G 

4-bit Adder 

4 4 

4 

P G 

4-bit Adder 

4 4 

4 

P G 

4-bit Adder 

Carry-Lookahead Adder 

with Cascaded Carry-Lookahead Logic 
– Carry-lookahead adder4 four-bit adders with internal 

carry lookahead 

– Second level carry lookahead unit extends lookahead to 

16 bits 
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CARRY-SELECT ADDER 

4-Bit Adder 
[3:0] 

C0 C4 

4-bit adder 
[7:4] 

1 C8 

0 C8 

five 
2:1 mux 

   0    1   0    1  0    1 0 1 

adder  
low 

adder 
high 

0 1 

4-bit adder 
[7:4] 

C8 S7 S6 S5 S4 S3 S2 S1 S0 

Redundant hardware to make carry calculation go faster 

Compute two high-order sums in parallel while waiting for carry-in 

One assuming carry-in is 0 and another assuming carry-in is 1 

Select correct result once carry-in is finally comp 

CARRY-SELECT ADDERS 
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MULTILEVEL CARRY-SELECT 

ADDERS 

42 

ARITHMETICAL OPERATIONS IN BCD 

Many digital systems (processors, computers) can perform the 

arithmetical operations or a part of them directly on BCD 

numbers. 

 

E.g. the microprocessors can perform BCD addition, several of 

them subtraction too. Certain special processors can perform 

BCD multiplication and division too. 

 

The BCD addition is reduced to binary addition. The tetrades of 

the operands are added as binary numbers, and if necessary 

(illegal codewords or decimal carry is generated during the 

addition), a systematic correction is performed. 

 



2018.04.22. 

22 

BCD ADDITION 

A BCD adder is used to perform the addition of BCD numbers.  

A BCD digit can have any of the ten possible four-bit binary 

representations, that is, 0000, 0001,    , 1001, the equivalent of 

decimal numbers 0, 1, …   , 9.  

 

When we set out to add two BCD digits and we assume that 

there is an input carry too, the highest binary number that we 

can get is the equivalent of decimal number 19 (9+9+1). 

This binary number is going to be (10011)bin. On the other 

hand, if we do BCD addition, we would expect the answer to 

be (0001 1001)BCD. And if we restrict the output bits to the 

minimum required, the answer in BCD would be (1 1001)BCD. 

44 

ADDITION IN NORMAL BCD (8421) 

CODE 

If the sum of two tetrades is not larger than 9, the result is 

valid, no correction is necessary. 

 

If the sum of two tetrades is larger than 9, (decimal carry and 

illegal codeword or pseudotetrade is generated) the result is 

valid only in binary system and not in BCD. The necessary 

correction is to add decimal 6 or i.e. binary 0110 to the actual 

tetrade. 

 

The correction should be performed beginning form the least 

significant tetrade and going upwards step-by-step. 
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ALGORITHM OF BCD (8421) ADDITION 

ABCD +BCD BBCD = ABCD +bin BBCD    

 

     if  ABCD +bin BBCD  9 

 

 

ABCD +BCD BBCD = ABCD +bin BBCD +bin 6BCD   

 

     if  ABCD +bin BBCD  9 

46 

FUNCTIONAL DIAGRAM OF A BCD 

ADDER (1 DIGIT) 

B3 

B2 

B1 

B0 

A3 

A2 

A1 

A0 

S3 

S2 

S1 

S0 

Binary 

adder 

C4 

C0 

„0” 

B3 

B2 

B1 

B0 

A3 

A2 

A1 

A0 

B3 

B2 

B1 

B0 

A3 

A2 

A1 

A0 

S3 

S2 

S1 

S0 

Binary 

adder 

C0 

& 1 

& 

„0” 

„0” 

„0” 

S3 

S2 

S1 

S0 

C4 

The first adder adds the two codes corresponding to the k-th 

decimal place, the second adds 6 if necessary. 
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APPLICATION EXAMPLE:  

2-DIGIT BCD ADDER 

48 

SUBTRACTION  IN BCD (8421) CODE 

In BCD as in binary, the subtraction is performed by 

complementing (the subtrahend) and addition. Generally 9’s 

complement is used. 

 

The circuit generating the 9’s complement can be 

constructed from common gates or form more complex 

functional elements. 
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GENERATING 9’S COMPLEMENT IN BCD 

=1 =1 =1 =1 

4-BIT ADER 

   

  

A3       A2       A1       A0 

X3      X2      X1      X0 

0       0 If V = 0 then Xk = Ak 

 

If V = 1 then 

8X3+4X2+2X1+X0 = 

 

= 9 – (8A3+4A2+2A1+A0) 

V 

MULTIPLIERS 
A binary multiplier is an electronic circuit used in digital 

electronics, such as a computer, to multiply two binary numbers. 

 

A variety of computer arithmetic techniques can be used to 

implement a digital multiplier. Most techniques involve 

computing a set of partial products, and then summing the 

partial products together. This process is similar to the method 

taught to primary school children for conducting long 

multiplication on base-10 integers, but has been modified here 

for application to a base-2 (binary) numeral system. 

 

The first stage of most multipliers involves generating the partial 

products which is nothing but an array of AND gates. An n-bit by 

n-nit multiplier requires n2 AND gates for partial product 

generation.  

The partial products are then added to give the final results. 
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COMBINATIONAL MULTIPLIER 

 
Partial Product Accumulation 

A0 
 

B0 
 

A0 B0 

A1 
 

B1 
 

A1 B0 
 

A0 B1 

A2 
 

B2 
 

A2 B0 
 

A1 B1 
 

A0 B2 

A3 
 

B3 
 

A3 B0 
 

A2 B1 
 

A1 B2 
 

A0 B3 

 
 
 
 
 
 

A3 B1 
 

A2 B2 
 

A1 B3 

 
 
 
 
 
 
 
 

A3 B2 
 

A2 B3 

 
 
 
 
 
 
 
 
 
 

A3 B3 

S6 S5 S4 S3 S2 S1 S0 S7 

52 

BINARY MULTIPLICATION 

ALGORITHM 

P = A x B 

       n-1                          n-1 

  A =  Ai 2
i       and    B =  Bi 2

i  

       i = 0                        i = 0 

Partial products 

             n-1 

 Pk = Bk  Ai 2
i = 0 if Bk = 0 and = A if Bk = 1 

   k = 0 

Complete product 

        n-1 

   P =  Pk 2
k  

        k = 0 
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SUMMING UP OF PARTIAL PRODUCTS 

Note use of parallel carry-outs to form higher order sums 
 
12 Adders, if full adders, this is 6 gates each = 72 gates 
 
16 gates form the partial products 
 
total = 88 gates! 

A 0 B 0 A 1  B 0 A 0 B 1 A 0 B 2 A 1 B 1 A 2 B 0 A 0 B 3 A 1 B 2 A 2 B 1 A 3 B 0 A 1 B 3 A 2 B 2 A 3 B 1 A 2 B 3 A 3 B 2 A 3 B 3 

HA 

S 0 S 1 

HA 

F A 

F A 

S 3 

F A 

F A 

S 4 

HA 

F A 

S 2 

F A 

F A 

S 5 

F A 

S 6 

HA 

S 7 
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COMBINATIONAL MULTIPLIER 

Another Representation of the Circuit 

A3 B0

S
C

A2 B0

S
C

A1 B0

S
C

A0 B0

S
C

A3 B1

S
C

A2 B1

S
C

A1 B1

S
C

A0 B1

S
C

A3 B2

S
C

A2 B2

S
C

A1 B2

S
C

A0 B2

S
C

A3 B3

S
C

A2 B3

S

A1 B3

S

A0 B3

S

B0

B1

B2

B3

P7 P6 P5 P4 P3 P2 P1 P0

A3 A2 A1 A0

Building block: FULL  ADDER + AND 

4 x 4 array of building blocks 

F A 

X 

Y 

A B 

S 
CI CO 

Cin 
Sum In 

Sum Out Cout 

4x4 BIT SERIAL/PARALLEL 

MULTIPLIER 

Block diagram of a 4x4 bit serial/parallel multiplier 

 IF multiplier bit 1 THEN add and shift 

 IF multipler bit 0 THEN shift 
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OPERATION OF THE MULTIPLIER 

8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 1 0 1 

0 1 1 0 1 0 1 0 1 

0 0 1 1 0 1 0 1 0 

0 0 0 1 1 0 1 0 1 

1 0 0 0 0 0 1 0 1 

0 1 0 0 0 0 0 1 0 

0  0 1 0 0 0 0 0 1 

Multiplicand  1       1      0     1   Mutiplier 0 1 0 1 

ADD 

SHIFT 

SHIFT 

ADD 

SHIFT 

SHIFT 

13 x 5 = 65 
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MULTIPLICATION USING ROM 

 (LOOK-UP-TABLE) 

 X   Y     Z 
 
0*0 00  00 0000 
0*1 00  01 0000 
0*2 00  10 0000 
0*3 00  11 0000 
1*1 01  01 0001 
1*2 01  10        0010 
1*3 01  11 0011 
2*0 10  00 0000 
2*1 10  01 0010 
2*2 10  10 0100 
2*3 10  11 0110 
3*0 11  00 0000 
3*1 11  01 0011 
3*2 11  10 0110 
3*3 11  11 1001 

ROM 

16x 4bit 

Z 

X 

Y 
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MAKING A 2n-BIT MULTIPLIER 

USING n-BIT MULTIPLIERS 

Induction:  we can use the same structuring 
principle to build a 4n-bit multiplier from our 
newly-constructed 2n-bit ones...   

REGROUP partial          

products – 

2 additions rather 

than 3! 

2n-bit by 2n-bit multiplication: 

 

1. Divide multiplicands into n-bit pieces 

2. Form 2n-bit partial products, using n-bit by n-bit 
multipliers. 

3. Align appropriately 

4. Add. 

 

60 

MODULAR MULTIPLIER ARCHITECTURE 

8 x 8 bit multiplier built from 4 x 4 bit modules 

Product  MSB : 0, LSB: 15) 
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MODULAR MULTIPLIER  

8 x 8 bit multiplier built from 4 x 4 bit modules 

Product  MSB : 0, LSB: 15) 

MULTIPLICATION: NEGATIVE 

NUMBERS 

The basic school method of multiplication handles the sign 

with a separate rule ("+ with + yields +", "+ with - yields -", 

etc.). Modern computers embed the sign of the number in the 

number itself, usually in the two’s complement representation. 

That forces the multiplication process to be adapted to handle 

two's complement numbers, and that complicates the process 

a bit more. Similarly, processors that use one’s complement 

sign-and-magnitude, IEEE-754 or other binary representations 

require specific adjustments to the multiplication process. 
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MULTIPLICATION: SPEEDING IT UP 

Older multiplier architectures employed a shifter and 

accumulator to sum each partial product, often one partial 

product per cycle, trading off speed for die area.  

 

Modern multiplier architectures use the Baugh-Wooley 

algorithm, Wallace tree or Dadda to add the partial 

products together in a single cycle. The performance of 

the Wallace tree implementation is sometimes improved 

by modified Booth encoding one of the two multiplicands, 

which reduces the number of partial products that must be 

summed. 

 

FULL ADDER IMPLEMENTED IN CMOS 

The simplest forms of the sum and carry function are 

(written in a form appropriate to CMOS implementation) 

 

         _     _     _                       _ _ 

  S = C(A B + A B) + C(A B + A B) 

 

  Cout = A B + C(A + B) 

 

This is easily implemented using standard CMOS 

principles. The total transistor count is 34. 

 

The disadvantage is that the circuit uses the negated 

values of the inputs too. So three extra inverters, i.e. 6 

transisotors are needed additionally. 
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FULL ADDER IMPLEMENTED IN CMOS 

This disadvantage can be avoided, if the negated value 

of the generated carry Cout is used to calculate the sum 

according to 

 

  Cout = A B + C(A + B) 

 

                           ___ 

  S = (A + B +C )Cout + A B C  

 

In this case the time delay of the sum will be larger, 

because three inverting operation is performed, but this 

is not relevant in a parallel (ripple-carry) adder, because 

the time necessary for a multi-bit addition is determined 

by the propagation time of the carry. 

 28 TRANSISTOR CMOS FULL ADDER 

28 transistors 

A B

B

A

Ci

Ci A

X

VDD

VDD

A B

Ci BA

B VDD

A

B

Ci

Ci

A

B

A CiB

Co

VDD

S

Cout = A B + C(A + B) 

               ___ 

S = (A + B +C )Cout + A B C  
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MULTIPLIERS: COMPLEXITY 

Transistor count for generic multiplier circuits is based 

on static CMOS implementation 

 

 8-bit  3000 

 

 16-bit  9000 

 

 32-bit  21000 

 

i.e. in the LSI range. 
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REVISION QUESTIONS 

1. What is a half-adder? Write its truth table. 

 

2. What is a full-adder? Draw its logic diagram with basic 

gates. 

 

3. Briefly describe the concept of look-ahead carry 

generation with respect to its use in adder circuits. 

What is its significance while implementing hardware for 

addition of binary numbers of longer lengths? 

 

4.Draw the logic diagram of a three-digit BCD adder and 

briefly describe its functional principle. 
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REVISION QUESTIONS 

6. Explain the operation of the carry-select adder. 

 

7. Explain how division and multiplication can be performed 

in digital systems. 

 

8. Explain the working of the serial adder. 
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PROBLEMS AND EXERCISES 

1. Implement a full-adder circuit using NAND gates only. 

 

2. Implement a full-adder circuit using NOR gates only. 

 

3. Draw the smallest possible complete circuit for a 2-bit 

carry-lookahead adder. 

 

4. Design an eight-bit adder–subtractor circuit using four-bit 

binary adders, type number 7483, and quad two-input XOR 

gates, type number 7486. Assume that pin connection 

diagrams of these ICs are available to you. 

 

 


