
2018.04.22.

1

1

DIGITAL TECHNICS II

Dr. Bálint Pődör

Óbuda University,

Microelectronics and Technology Institute

10. LECTURE: ARITHMETIC CIRCUITS

2nd (Spring) term 2017/2018

2

10. LECTURE: ARITMETHIC CIRCUITS, ALU

1. Basic arithmetic circuits and building blocks

2. Binary adders

3. BCD adders

4. Binary multipliers

2018.04.22.

2

3

ARITHMETIC ELEMENTS

• Arithemtic elements- perform various arithemetic

operatios.

• Operations – performed between operands.

• Operands – from memory, from internal temporary

storage elements (registers).

• Result – to internal temporary storage elements or to

other type of memory.

ARITHMETIC CIRCUITS:

BASIC BUILDING BLOCKS

We will discuss those combinational logic building blocks

that can be used to perform addition and subtraction

operations on binary numbers. Addition and subtraction are

the two most commonly used arithmetic operations, as the

other two, namely multiplication and division, are

respectively the processes of repeated addition and

repeated subtraction.

We will begin with the basic building blocks that form the

basis of all hardware used to perform the aforesaid

arithmetic operations on binary numbers. These include

half-adder, full adder, half-subtractor, full subtractor and

controlled inverter.

2018.04.22.

3

Ai Bi Sum Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Ai Bi Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

CIRCUITS FOR BINARY ADDITION

(RECAPITULATION …)

• Half adder (add two 1-bit numbers)

– Sum = Ai' Bi + Ai Bi' = Ai xor Bi

– Cout = Ai Bi

• Full adder (carry-in to cascade for multi-bit adders)

– Sum = Ci xor A xor B

– Cout = B Ci + A Ci + A B = Ci (A + B) + A B

6

FULL ADDER: BOOLEAN FUNCTIONS

Sum _ _ _ _ _ _

 Si = AiBiCi-1 + AiBiCi-1 + AiBiCi-1 + AiBiCi-1

Carry _ _ _

 Ci = AiBiCi-1 + AiBiCi-1 + AiBiCi-1 + AiBiCi-1

 = AiBi + AiCi-1 + BiCi-1 = AiBi + (Ai + Bi)Ci-1

 = AiBi + (A i Bi)Ci-1

The sum can be expressed as a three-variable exclusive OR

function (Si = AiBiCi).

The carry is the three-variable majority function and can also

be expressed in various other algebraic forms.

2018.04.22.

4

Cout = A B + Cin (A xor B) = A B + B Cin + A Cin

A
B

Cin
S

A

A

B

B

Cin
Cout

A

B

A xor B

Cin

A xor B xor Cin
Half

Adder

Sum

Cout Cin (A xor B) A B

Sum

Cout

Half
Adder

Sum

Cout

FULL ADDER IMPLEMENTATIONS

• Standard approach

– 6 gates

– 2 XORs, 2 ANDs, 2 ORs

• Alternative implementation

– 5 gates

– half adder is an XOR gate and AND gate

– 2 XORs, 2 ANDs, 1 OR

8

FULL ADDER: GENERAL RELEVANCE

The full adder is the fundamental building block in many

arithmetic circuits, such as adders and multipliers.

Since these circuits strongly affect the overall performance

in current digital ICs, their speed optimization is crucial in

high performance applications, and typical applications

require a tradeoff between power consumption and speed.

In addition, as arithmetic circuits significantly contribute to

the overall power budget, their power consumption

reduction becomes the main objective to pursue in low-

power ICs used in portable electronic equipment.

2018.04.22.

5

HALF- AND FULL SUBTRACTOR

The subtraction of two given binary numbers can be carried

out by adding 2’s complement of the subtrahend to the

minuend. This allows us to do a subtraction operation with

adder circuits.

However, we will also briefly look at the counterparts of

half-adder and full adder circuits in the half-subtractor and full

subtractor for direct implementation of subtraction operations

using logic gates.

HALF-SUBTRACTOR

A half-subtractor is a combinational circuit that can be used

to subtract one binary digit from another to produce a

DIFFERENCE output and a BORROW output. The

BORROW output here specifies whether a ‘1’ has been

borrowed to perform the subtraction.

2018.04.22.

6

COMBINED HALF

ADDER/SUBTRACTOR

Control 0 ADD

Control 1 SUBTRACT

FULL SUBTRACTOR

A full subtractor performs subtraction operation on two bits,

a minuend and a subtrahend, and also takes into

consideration whether a ‘1’ has already been borrowed by

the previous adjacent lower minuend bit or not. As a result,

there are three bits to be handled at the input of a full

subtractor, namely the two bits to be subtracted and a

borrow bit designated as Bin . There are two outputs,

namely the DIFFERENCE output D and the BORROW

output Bo. The BORROW output bit tells whether the

minuend bit needs to borrow a ‘1’ from the next possible

higher minuend bit.

2018.04.22.

7

FULL SUBTRACTOR

Truth table of a full subtractor

FULL SUBTRACTOR

Logic implementation of a full subtractor with half-subtractors.

2018.04.22.

8

MULTIBIT ADDERS:

BIT-SERIAL ADDER

Functional diagram of the bit-serial adder.

OPERATION OF BIT-SERIAL ADDER

2018.04.22.

9

SERIAL ADDER WITH ACCUMULATOR

0 1 0 1

0 1 1 1

1 1 0 0

18

4-BIT PARALLEL ADDER (SERIES CARRY

PROPAGATION, RIPPLE CARRY)

1+

y3 x3

s3

1+

y2 x2

s2

1+

y1 x1

s1

1+

y0 x0

s0

c0

c4

c3 c2 c1

4 bit adder

y3 x3 y2 x2 y1 x1 y0 x0 cin

cout s3 s2 s1 s0

Carry is propagated serially!

2018.04.22.

10

RIPPLE CARRY ADDER

The full adder is for adding two operands that are only one bit

wide. To add two operands that are, say four bits wide, we

connect four full adders together in series. The resulting circuit

is called a ripple carry adder for adding two 4-bit operands.

The ripple-carry adder is slow because the carry-in for each full

adder is dependent on the carry-out signal from the previous

FA. So before FAi can output valid data, it must wait for FAi–1 to

have valid data.

20

SUBTRACTION: 2S COMPLEMENT

 5 0101

+2 +0010

 7 0111

 5 0101

-2 +1110

 3 1 0011

 2 0010
-2 1101 1s complement

-2 1110 2s complement

addition

subtraction

2018.04.22.

11

CONTROLLED INVERTER

A controlled inverter is needed when an adder is to be used as

a subtractor. Subtraction is addition of the 2’s complement of

the subtrahend to the minuend. Thus, the first step towards

implementation of a subtractor is to determine the 2’s

complement of the subtrahend. And for this, one needs firstly to

find 1’s complement. A controlled inverter is used to find 1’s

complement. A one-bit controlled inverter is a two-input EX-OR

gate with one of its inputs treated as a control input.

Eight-bit controlled inverter

22

ADDITION AND SUBTRACTION

Full Adder

B A CIN

COUT
 SUM

Full Adder

B A CIN

COUT
 SUM

Full Adder

B A CIN

COUT
 SUM

B1 A1 B0 A0 B2 A2

CIN = 0

Q1 Q0 Q2

Full Adder

B A C IN

C OUT
 SUM

Full Adder

B A C IN

C OUT
 SUM

Full Adder

B A C IN

C OUT
 SUM

B 1 A 1 B 0 A 0 B 2 A 2

C IN = 1

Q 1 Q 0 Q 2

Addition

Subtraction

2018.04.22.

12

23

ADD/SUBTRACT CIRCUIT

Full Adder

B A CIN

COUT
 SUM

Full Adder

B A CIN

COUT
 SUM

Full Adder

B A CIN

COUT
 SUM

B1 A1 B0 A0 B2 A2

Q1 Q0 Q2

ADD/SUB

BAQ

CBB

SA

BAQ

CBB

SA

INin

INin













1 &

1/

0 &

0/

0 1 1

1 0 1

1 1 0

0 0 0

Bn BIN(n)
ADD/SUB

XOR gates: controlled inverters

24

A B

Cout

Sum

Cin

0 1

Add'
Subtract

A0 B0 B0'

Sel

Overflow

A B

Cout

Sum

Cin

A1 B1 B1'

Sel

A B

Cout

Sum

Cin

A2 B2 B2'

Sel 0 1 0 1 0 1

A B

Cout

Sum

Cin

A3 B3 B3'

Sel

S3 S2 S1 S0

4-BIT ADDER/SUBTRACTER

Use an adder to do subtraction thanks to 2s complement

representation

A – B = A + (– B) = A + B' + 1

Control signal selects B or 2s complement of B

2018.04.22.

13

RIPPLE CARRY ADDER

The layout of a ripple carry adder is simple, which allows

for fast design time, however, the ripple carry adder is

relatively slow, since each full adder must wait for the carry

bit from the previous full adder.

From Cin to Cout 2 gates should be passed through. Ergo a

32-bit adder requires 31 carry computations and the final

sum calculation for a total of 31x2 + 1 = 63 gate delays.

26

PROPAGATION DELAY OF THE

RIPPLE CARRY ADDER

1+

y3 x3

s3

1+

y2 x2

s2

1+

y1 x1

s1

1+

y0 x0

s0

c0

c4

c3 c2 c1

delay(3dt)

2018.04.22.

14

27

Cout = A B + Cin (A xor B) = A B + B Cin + A Cin

A
B

Cin
S

A

A

B

B

Cin
Cout

DELAY IN THE 1-BIT FULL ADDER

Standard layout

6 gates

2 XOR, 2 AND, 2 OR

If A, B and Cin arrive simultaneously, the sum S will be

available after a delay of 2t, the carry out Cout after a delay

of 3t!

The delays with respect to the arrival of Cin are t and 2t

respectively!

A

A

B

B

Cin Cout

@0

@0

@0
@0

@N

@1

@1

@N+1

@N+2

late
arriving
signal

two gate delays
to compute Cout

4 stage
adder

A0
B0

Cin

S0 @2

A1
B1

C1 @2

S1 @3

A2
B2

C2 @4

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

RIPPLE-CARRY ADDERS:

SERIAL CARRY PROPAGATION

• Critical Delay

– The propagation of carry from low to high order

stages

A
B

Cin
S

2018.04.22.

15

CARRY LOOK-AHEAD ADDER

Carry look-ahead adders reduce the computation time.

They work creating propagate and generate signals (P and

G) for each bit position, and using them the carries for each

position are created.

Some multi-bit adder architectures break the adder into

blocks. It is possible to vary the length of these blocks

based on the propagation delay of the circuits to optimize

computation time. These block based adders include the

carry bypass adder which will determine P and G for each

block rather than each bit, and the carry select adder which

pre-generates sum and carry values for either possible

carry input to the block.

FULL ADDER: CARRY

A B

Cout

Sum

Cin Full
adder

Co = A B + (A  B)Ci

vagy

Co = A B + (A + B)Ci

Co = G + P Ci

2018.04.22.

16

CARRY-LOOKAHEAD LOGIC
• Carry generate: Gi = Ai Bi

– Must generate carry when A = B = 1

• Carry propagate: Pi = Ai xor Bi

– Carry-in will equal carry-out here

• Sum and Cout can be re-expressed in terms of

generate/propagate:

– Si = Ai xor Bi xor Ci

 = Pi xor Ci

– Ci+1= Ai Bi + Ai Ci + Bi Ci

 = Ai Bi + Ci (Ai + Bi)

 = Ai Bi + Ci (Ai xor Bi)

 = Gi + Ci Pi

CARRY-LOOKAHEAD LOGIC

• Re-express the carry logic as follows:

– C1 = G0 + P0 C0

– C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0

– C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1

P0 C0

– C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2

P1 G0

+ P3 P2 P1 P0 C0

• Each of the carry equations can be implemented with

two-level logic

– All inputs are now directly derived from data inputs and

not from intermediate carries

– this allows computation of all sum outputs to proceed

in parallel

2018.04.22.

17

33 G3

C0 C0

C0

C0
P0 P0

P0

P0

G0
G0

G0

G0
C1

P1

P1

P1

P1

P1

P1 G1
G1

G1

C2
P2

P2

P2

P2

P2

P2

G2
G2

C3

P3

P3

P3

P3

C4

Pi @ 1 gate delay

Ci Si @ 2 gate delays

Bi
Ai

Gi @ 1 gate delay increasingly complex
logic for carries

CARRY LOOK AHEAD

IMPLEMENTATION

Adder with propagate and generate outputs

34

A0
B0

Cin

S0 @2

A1
B1

C1 @2

S1 @3

A2
B2

C2 @4

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

A0
B0

Cin

S0 @2

A1
B1

C1 @3

S1 @4

A2
B2

C2 @3

S2 @4

A3
B3

C3 @3

S3 @4

C4 @3 C4 @3

CARRY LOOK AHEAD IMPLEMENTATION

• Carry-lookahead logic generates individual carries

– Sums computed much more quickly in parallel

– However, cost of carry logic increases with more stages

2018.04.22.

18

4-BIT CARRY LOOKAHEAD ADDER CIRCUIT

“carry-out”, not “c-zero”

Total 26 gates, c.f. 4 standard full adders 4x6 = 24 gates

74HC/HCT181 4-BIT ALU LOGIC DIAGRAM

2018.04.22.

19

CARRY LOOKAHEAD ADDERS

• By adding more hardware, we reduced the number of levels in the
circuit and sped things up.

• We can “cascade” carry lookahead adders, just like ripple carry
adders. (We’d have to do carry lookahead between the adders too.)

• How much faster is this?

– For a 4-bit adder, not much. There are 4 gates in the longest
path of a carry lookahead adder, versus 9 gates for a ripple carry
adder.

– But if we do the cascading properly, a 16-bit carry lookahead
adder could have only 8 gates in the longest path, as opposed to
33 for a ripple carry adder.

– Newer CPUs these days use 64-bit adders. That’s 12 vs. 129
gates!

• The delay of a carry lookahead adder grows logarithmically with the
size of the adder, while a ripple carry adder’s delay grows linearly.

• The thing to remember about this is the trade-off between
complexity and performance. Ripple carry adders are simpler, but
slower. Carry lookahead adders are faster but more complex.

38

Lookahead Carry Unit
C0

P0 G0 P1 G1 P2 G2 P3 G3 C3 C2 C1

C0

P3-0 G3-0

C4

@3 @2
@4

@3 @2
@5

@3 @2
@5

@3 @2

@4

@5 @3

@0
C16

A[15-12] B[15-12]
C12

S[15-12]

A[11-8] B[11-8]
C8

S[11-8]

A[7-4] B[7-4]
C4

S[7-4]
@7 @8 @8

A[3-0] B[3-0]
C0

S[3-0]

@0

@4

4 4

4

P G

4-bit Adder

4 4

4

P G

4-bit Adder

4 4

4

P G

4-bit Adder

4 4

4

P G

4-bit Adder

Carry-Lookahead Adder

with Cascaded Carry-Lookahead Logic
– Carry-lookahead adder4 four-bit adders with internal

carry lookahead

– Second level carry lookahead unit extends lookahead to

16 bits

2018.04.22.

20

39

CARRY-SELECT ADDER

4-Bit Adder
[3:0]

C0 C4

4-bit adder
[7:4]

1 C8

0 C8

five
2:1 mux

 0 1 0 1 0 1 0 1

adder
low

adder
high

0 1

4-bit adder
[7:4]

C8 S7 S6 S5 S4 S3 S2 S1 S0

Redundant hardware to make carry calculation go faster

Compute two high-order sums in parallel while waiting for carry-in

One assuming carry-in is 0 and another assuming carry-in is 1

Select correct result once carry-in is finally comp

CARRY-SELECT ADDERS

2018.04.22.

21

MULTILEVEL CARRY-SELECT

ADDERS

42

ARITHMETICAL OPERATIONS IN BCD

Many digital systems (processors, computers) can perform the

arithmetical operations or a part of them directly on BCD

numbers.

E.g. the microprocessors can perform BCD addition, several of

them subtraction too. Certain special processors can perform

BCD multiplication and division too.

The BCD addition is reduced to binary addition. The tetrades of

the operands are added as binary numbers, and if necessary

(illegal codewords or decimal carry is generated during the

addition), a systematic correction is performed.

2018.04.22.

22

BCD ADDITION

A BCD adder is used to perform the addition of BCD numbers.

A BCD digit can have any of the ten possible four-bit binary

representations, that is, 0000, 0001, , 1001, the equivalent of

decimal numbers 0, 1, … , 9.

When we set out to add two BCD digits and we assume that

there is an input carry too, the highest binary number that we

can get is the equivalent of decimal number 19 (9+9+1).

This binary number is going to be (10011)bin. On the other

hand, if we do BCD addition, we would expect the answer to

be (0001 1001)BCD. And if we restrict the output bits to the

minimum required, the answer in BCD would be (1 1001)BCD.

44

ADDITION IN NORMAL BCD (8421)

CODE

If the sum of two tetrades is not larger than 9, the result is

valid, no correction is necessary.

If the sum of two tetrades is larger than 9, (decimal carry and

illegal codeword or pseudotetrade is generated) the result is

valid only in binary system and not in BCD. The necessary

correction is to add decimal 6 or i.e. binary 0110 to the actual

tetrade.

The correction should be performed beginning form the least

significant tetrade and going upwards step-by-step.

2018.04.22.

23

45

ALGORITHM OF BCD (8421) ADDITION

ABCD +BCD BBCD = ABCD +bin BBCD

 if ABCD +bin BBCD  9

ABCD +BCD BBCD = ABCD +bin BBCD +bin 6BCD

 if ABCD +bin BBCD  9

46

FUNCTIONAL DIAGRAM OF A BCD

ADDER (1 DIGIT)

B3

B2

B1

B0

A3

A2

A1

A0

S3

S2

S1

S0

Binary

adder

C4

C0

„0”

B3

B2

B1

B0

A3

A2

A1

A0

B3

B2

B1

B0

A3

A2

A1

A0

S3

S2

S1

S0

Binary

adder

C0

& 1

&

„0”

„0”

„0”

S3

S2

S1

S0

C4

The first adder adds the two codes corresponding to the k-th

decimal place, the second adds 6 if necessary.

2018.04.22.

24

APPLICATION EXAMPLE:

2-DIGIT BCD ADDER

48

SUBTRACTION IN BCD (8421) CODE

In BCD as in binary, the subtraction is performed by

complementing (the subtrahend) and addition. Generally 9’s

complement is used.

The circuit generating the 9’s complement can be

constructed from common gates or form more complex

functional elements.

2018.04.22.

25

GENERATING 9’S COMPLEMENT IN BCD

=1 =1 =1 =1

4-BIT ADER

  

 

A3 A2 A1 A0

X3 X2 X1 X0

0 0 If V = 0 then Xk = Ak

If V = 1 then

8X3+4X2+2X1+X0 =

= 9 – (8A3+4A2+2A1+A0)

V

MULTIPLIERS
A binary multiplier is an electronic circuit used in digital

electronics, such as a computer, to multiply two binary numbers.

A variety of computer arithmetic techniques can be used to

implement a digital multiplier. Most techniques involve

computing a set of partial products, and then summing the

partial products together. This process is similar to the method

taught to primary school children for conducting long

multiplication on base-10 integers, but has been modified here

for application to a base-2 (binary) numeral system.

The first stage of most multipliers involves generating the partial

products which is nothing but an array of AND gates. An n-bit by

n-nit multiplier requires n2 AND gates for partial product

generation.

The partial products are then added to give the final results.

2018.04.22.

26

COMBINATIONAL MULTIPLIER

Partial Product Accumulation

A0

B0

A0 B0

A1

B1

A1 B0

A0 B1

A2

B2

A2 B0

A1 B1

A0 B2

A3

B3

A3 B0

A2 B1

A1 B2

A0 B3

A3 B1

A2 B2

A1 B3

A3 B2

A2 B3

A3 B3

S6 S5 S4 S3 S2 S1 S0 S7

52

BINARY MULTIPLICATION

ALGORITHM

P = A x B

 n-1 n-1

 A =  Ai 2
i and B =  Bi 2

i

 i = 0 i = 0

Partial products

 n-1

 Pk = Bk  Ai 2
i = 0 if Bk = 0 and = A if Bk = 1

 k = 0

Complete product

 n-1

 P =  Pk 2
k

 k = 0

2018.04.22.

27

53

SUMMING UP OF PARTIAL PRODUCTS

Note use of parallel carry-outs to form higher order sums

12 Adders, if full adders, this is 6 gates each = 72 gates

16 gates form the partial products

total = 88 gates!

A 0 B 0 A 1 B 0 A 0 B 1 A 0 B 2 A 1 B 1 A 2 B 0 A 0 B 3 A 1 B 2 A 2 B 1 A 3 B 0 A 1 B 3 A 2 B 2 A 3 B 1 A 2 B 3 A 3 B 2 A 3 B 3

HA

S 0 S 1

HA

F A

F A

S 3

F A

F A

S 4

HA

F A

S 2

F A

F A

S 5

F A

S 6

HA

S 7

2018.04.22.

28

COMBINATIONAL MULTIPLIER

Another Representation of the Circuit

A3 B0

S
C

A2 B0

S
C

A1 B0

S
C

A0 B0

S
C

A3 B1

S
C

A2 B1

S
C

A1 B1

S
C

A0 B1

S
C

A3 B2

S
C

A2 B2

S
C

A1 B2

S
C

A0 B2

S
C

A3 B3

S
C

A2 B3

S

A1 B3

S

A0 B3

S

B0

B1

B2

B3

P7 P6 P5 P4 P3 P2 P1 P0

A3 A2 A1 A0

Building block: FULL ADDER + AND

4 x 4 array of building blocks

F A

X

Y

A B

S
CI CO

Cin
Sum In

Sum Out Cout

4x4 BIT SERIAL/PARALLEL

MULTIPLIER

Block diagram of a 4x4 bit serial/parallel multiplier

 IF multiplier bit 1 THEN add and shift

 IF multipler bit 0 THEN shift

2018.04.22.

29

OPERATION OF THE MULTIPLIER

8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 1

0 1 1 0 1 0 1 0 1

0 0 1 1 0 1 0 1 0

0 0 0 1 1 0 1 0 1

1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1

Multiplicand 1 1 0 1 Mutiplier 0 1 0 1

ADD

SHIFT

SHIFT

ADD

SHIFT

SHIFT

13 x 5 = 65

58

MULTIPLICATION USING ROM

 (LOOK-UP-TABLE)

 X Y Z

0*0 00 00 0000
0*1 00 01 0000
0*2 00 10 0000
0*3 00 11 0000
1*1 01 01 0001
1*2 01 10 0010
1*3 01 11 0011
2*0 10 00 0000
2*1 10 01 0010
2*2 10 10 0100
2*3 10 11 0110
3*0 11 00 0000
3*1 11 01 0011
3*2 11 10 0110
3*3 11 11 1001

ROM

16x 4bit

Z

X

Y

2018.04.22.

30

MAKING A 2n-BIT MULTIPLIER

USING n-BIT MULTIPLIERS

Induction: we can use the same structuring
principle to build a 4n-bit multiplier from our
newly-constructed 2n-bit ones...

REGROUP partial

products –

2 additions rather

than 3!

2n-bit by 2n-bit multiplication:

1. Divide multiplicands into n-bit pieces

2. Form 2n-bit partial products, using n-bit by n-bit
multipliers.

3. Align appropriately

4. Add.

60

MODULAR MULTIPLIER ARCHITECTURE

8 x 8 bit multiplier built from 4 x 4 bit modules

Product MSB : 0, LSB: 15)

2018.04.22.

31

61

MODULAR MULTIPLIER

8 x 8 bit multiplier built from 4 x 4 bit modules

Product MSB : 0, LSB: 15)

MULTIPLICATION: NEGATIVE

NUMBERS

The basic school method of multiplication handles the sign

with a separate rule ("+ with + yields +", "+ with - yields -",

etc.). Modern computers embed the sign of the number in the

number itself, usually in the two’s complement representation.

That forces the multiplication process to be adapted to handle

two's complement numbers, and that complicates the process

a bit more. Similarly, processors that use one’s complement

sign-and-magnitude, IEEE-754 or other binary representations

require specific adjustments to the multiplication process.

2018.04.22.

32

MULTIPLICATION: SPEEDING IT UP

Older multiplier architectures employed a shifter and

accumulator to sum each partial product, often one partial

product per cycle, trading off speed for die area.

Modern multiplier architectures use the Baugh-Wooley

algorithm, Wallace tree or Dadda to add the partial

products together in a single cycle. The performance of

the Wallace tree implementation is sometimes improved

by modified Booth encoding one of the two multiplicands,

which reduces the number of partial products that must be

summed.

FULL ADDER IMPLEMENTED IN CMOS

The simplest forms of the sum and carry function are

(written in a form appropriate to CMOS implementation)

 _ _ _ _ _

 S = C(A B + A B) + C(A B + A B)

 Cout = A B + C(A + B)

This is easily implemented using standard CMOS

principles. The total transistor count is 34.

The disadvantage is that the circuit uses the negated

values of the inputs too. So three extra inverters, i.e. 6

transisotors are needed additionally.

2018.04.22.

33

FULL ADDER IMPLEMENTED IN CMOS

This disadvantage can be avoided, if the negated value

of the generated carry Cout is used to calculate the sum

according to

 Cout = A B + C(A + B)

 S = (A + B +C)Cout + A B C

In this case the time delay of the sum will be larger,

because three inverting operation is performed, but this

is not relevant in a parallel (ripple-carry) adder, because

the time necessary for a multi-bit addition is determined

by the propagation time of the carry.

 28 TRANSISTOR CMOS FULL ADDER

28 transistors

A B

B

A

Ci

Ci A

X

VDD

VDD

A B

Ci BA

B VDD

A

B

Ci

Ci

A

B

A CiB

Co

VDD

S

Cout = A B + C(A + B)

S = (A + B +C)Cout + A B C

2018.04.22.

34

MULTIPLIERS: COMPLEXITY

Transistor count for generic multiplier circuits is based

on static CMOS implementation

 8-bit 3000

 16-bit 9000

 32-bit 21000

i.e. in the LSI range.

68

REVISION QUESTIONS

1. What is a half-adder? Write its truth table.

2. What is a full-adder? Draw its logic diagram with basic

gates.

3. Briefly describe the concept of look-ahead carry

generation with respect to its use in adder circuits.

What is its significance while implementing hardware for

addition of binary numbers of longer lengths?

4.Draw the logic diagram of a three-digit BCD adder and

briefly describe its functional principle.

2018.04.22.

35

69

REVISION QUESTIONS

6. Explain the operation of the carry-select adder.

7. Explain how division and multiplication can be performed

in digital systems.

8. Explain the working of the serial adder.

70

PROBLEMS AND EXERCISES

1. Implement a full-adder circuit using NAND gates only.

2. Implement a full-adder circuit using NOR gates only.

3. Draw the smallest possible complete circuit for a 2-bit

carry-lookahead adder.

4. Design an eight-bit adder–subtractor circuit using four-bit

binary adders, type number 7483, and quad two-input XOR

gates, type number 7486. Assume that pin connection

diagrams of these ICs are available to you.

