

MÉRÉS ÉS MANIPULÁCIÓ A NANOVILÁGBN

A nanotechnológiai kutatások kétségtelenül legfontosabb eszközei a különböző mikroszkópok. A nanométeres mérettartományban azonban nem elegendő már a hagyományos optikai mikroszkópok maximális felbontóképessége sem, ezért új, a fénymikroszkópoktól alapelveiben is különböző eszközökre volt szükség a nanostruktúrák megfigyelésére.

Tények:

Az emberi szem feloldóképessége kb. 20 µm

1 nm körülbelül 5 nagyságrenddel kisebb mint az emberi szem felbontóképessége

MÉRÉS ÉS MANIPULÁCIÓ A NANOVILÁGBN

A főbb lehetőségek, illetve eszközök:

Fény (elektromágneses sugárzás) helyett elektronsugár alkalmazása (transzmissziós és pásztázó elektron mikroszkóp).

A transzmissziós elektronmikroszkópban a lényeges tényező az, hogy a nagyfeszültséggel gyorsított elektron de Broglie (kvantummechanikai) hullámhossza jóval (több nagyságrenddel!) kisebb a látható fényénél, $\lambda = h/p$, (h a Planck állandó, p az elektron impulzusa).

MÉRÉS ÉS MANIPULÁCIÓ A NANOVILÁGBN

A másik pedig az ún. pásztázószondás mikroszkópok (*Scanning Probe Microscpope*, SPM) különböző válfajai, melyek nem "átvilágításon" vagy reflexión alapulnak, hanem új elven, azaz az alkalmazott szondának és a minta felületével illetve a minta felületén lévő atomokkal való kölcsönhatásán alapulnak. Az úttörő itt az 1981-ben megalkotott pásztázó alagútmikroszkóp (*Scanning Tunneling Microscope*, STM) volt,

6

МІК	ROSZKÓPC	S MÓDSZE	REK
Név	Működési elv	Előnyök	Hátrányok
Optikai mikroszkóp	Optikai transzmissziós, vagy reflexiós	- Egyszerű - Kiforrott technológia	 Diffrakciólimitált Korlátozott mélységélesség
Pásztázó elekron- mikroszkóp SEM (Scanning Electron Microscope)	Mintából kilépő (vagy visszaszórt, vagy szekunder) elektronok detektálása	- Nagy mélység- élesség ("3D kép") - Spektroszkópiai lehetőség (EDS)	 Szigetelő minták esetében mintaelő- készítést igényel Vákuumot igényel
Transzmissziós elektronmikroszkóp TEM (<i>Transmission</i> <i>Electron</i> <i>Microscope</i>)	Nagyenergiájú elektronokkal világítjuk át a mintát	- Atomi felbontás - Spektroszkópia	 Körülményes mintaelőkészítés (ionsugaras vékonyítás) Költséges Ultranagy vákuumot igényel

1

MIKROSZKÓPOS MÓDSZEREK				
Név	Működési elv	Előnyök	Hátrányok	
Pásztázó alagútmikroszkóp STM (Scanning Tunneling Microscope)	Minta és SPM hegy közötti alagútáram mérése	 Nem igényel mintaelőkészítést Nincs szükség különleges atmoszférára 	 Csak vezető (esetleg félvezető) minta vizsgálható 	
Atomerő- mikroszkóp AFM (<i>Atomic Force</i> <i>Microscop</i> e)	Minta és AFM hegy közötti erőhatás mérése	- Sokrétű felhasználás - Nem igényel mintaelőkészítést - Nincs szükség különleges atmoszférára	- Atomi felbontás csak speciális körülmények között érhető el - Rezgésre fokozottan érzékeny	
Közeltéri optikai mikroszkóp (Scanning Near- Field Optical	Rendkívül kis apertúrájú fény- forrást használó transzmissziós,	 Spektroszkópiai alkalmazás Diffrakciós limit nem korlátozza a 		
<i>Microscope</i> , SNOM()	vagy reflexiós optikai	felbontást	9	

OPTIKAI MIKROSZKÓP: FEJLŐDÉSTÖRTÉNET

16. század: lencse csiszolás 1590-1595: első összetett mikroszkóp (*Zacharias* és *Hans Jansen*)

17. század: Átlátszó és homogén üveg (flint, ólomüveg)

17. század vége: Antony van Leeuwhoek (1 lencse, 1mm, 250 x, 1 μm) Robert Hooke (3 lencse)

<section-header><text><equation-block><equation-block><text>

TRANSZMISSZIÓS ÉS PÁSZTÁZÓ ELEKTRON MIKROSZKÓP

A finomabb részletek vizsgálatára alkalmas elektronmikroszkópok között két eltérő elven működő műszercsaládot kell elkülönítenünk.

A képet nem optikai elven, hanem, a televízió képalkotásához hasonlóan, elektronikus módon előállító pásztázó elektronmikroszkópot (scanning electron microscope, SEM), illetve az optikai analógia alapján megérthető képalkotású transzmissziós elektronmikroszkópot (transmission electron microscope, TEM).

17

TRANSZMISSZIÓS ÉS PÁSZTÁZÓ ELEKTRONMIKROSZKÓP

Az átvilágítós, azaz transzmissziós elektronmikroszkópban (TEM), amelynél az elektronsugár a vékony (jellemzően 100–500 nm vastagságú) mintát átvilágítva, elektromágneses lencserendszeren áthaladva az optikai mikroszkópéhoz hasonló, párhuzamos képalkotást használva hoz létre nagyított képet.

A párhuzamos képalkotás azt jelenti, hogy a mikroszkópi kép valamennyi képpontja egyszerre jön létre.

A másik irány a pásztázás elvét alkalmazza, amely a soros képalkotást használja. Ennek során a kép pontjai nem egyszerre, hanem pontrólpontra, időben egymás után jönnek létre.

RÉSZECSKE ÉS HULLÁM				
Direkt kísértleti bizonyíték:				
<i>Clinton Joseph Davisson</i> (1927) : kisenergiájú elektronok diffrakciója nikkel (Ni) egykristályon (reflexió)				
<i>Georg Paget Thomson</i> (1927): elektronok diffrakciója fém egykristályon transzmisszióban				
Fizikai Nobel díj (1937): mindketten				
23				

PÁSZTÁZÓ ELEKTRONMIKROSZKÓP: SEM

A pásztázó elektronmikroszkópban (**S***canning* **E***lectron* **Mi***croscope*, SEM) a mintát jól fókuszált elektronsugárral bombázva az általa visszaszórt részecskéket vagy a besugárzás hatására kilépő elektromágneses sugárzást detektálják.

Előnye, hogy rendkívül nagy mélységélességgel rendelkezik, azonban felbontásban csak a legjobb eszközök érik el a nanométeres tartományt. Ezen túlmenően az elektrosztatikus feltöltődés miatt szigetelő mintákat nem lehet vele közvetlenül megfigyelni, csak akkor, ha vékony vezető (pl. arany) réteget párologtatnak a mintára.

PÁSZTÁZÓ ELEKTRONMIKROSZKÓP: SEM

A pásztázó elektronmikroszkópia egy nagyon hatékony roncsolásmentes karakterizálási módszer mindenféle felülethez, kb. 2,5-50 kV elektrongyorsító feszültséget használva.

A másodlagos és visszaszórt elektronok detektálásán túlmenően a legtöbb SEM készülék további kiegészítőkkel is fel van szerelve, pl. Röntgen-sugárzás, abszorbeált elektronok, transzmissziós elektronok, katodolumineszcencia (CL) detektálása.

Ha energia-diszperzív Röntgen analizátor (*Energy Dispersive X-Ray*, EDX) is kapcsolódik az elektronmikroszkóphoz, akkor roncsolásmentes mikroanalizátorként is alkalmazhatóvá válik.

⁴¹

