Assessment and subject description

Óbuda University							
Kandó Kálmán Faculty of Electrical Engineering				Institute of Microelectronics and Technology			
Subject name and code: Mathematics II, KMEMA21ANC Credits: 6							edits: 6
Full-time, Sprin	ig Semest	er					
Course: Electric	al engine	ering	-				
Responsible:	Dr. Bard	óti	Teaching staff: Kurucz Zoltán, Schmidt Edi			t	
	György						
Prerequisites: Matematics I, KMEM11ANC							0
Contact hours	Lecture	e: 3	Class discussion.: 2 Lab hours: 0			l'utorial: 0	
per week:							
Assessment and	Assessment and						
evaluation:	evaluation: written examination						
Ainer Englagia	ia an haai	a tamiaa	Subject desc	rip	tion diaguagiang halp students	to col-10	mahlama
Alms: Emphasis	is on dasi	c topics	of mathematics. Cl	lass	the development of algo	to solve	e problems
skills as well as	in ne iop	l underst	anding	IOLE	the development of arge	corate an	iu analytic
Topics to be con	arad. Inter	aration o	anung. Af two yariable real	val	lued functions Series of n	umbarg	and
functions Integr	al calculus	s II I anl	lace transform Ord	-va lina	ry differential equations	unioers a Prohahili	ity theory
Tunetions. Integr		<u>5 11. Lap</u>	Tonics	iiiia	ry unificiential equations. I	Week	Lessons
Integration of the	o variabl	a real va	luga functions			WEEK	LUSSONS
Concept of doub	<i>le</i> integral	Geome	nueu junctions. Stric meaning and n	ron	erties of double		
integrals Calcul	ating doub	le integ	rals on normal dom	ain	s Applications (Finding	1.	3+2
volume_etc.)	uning uout	ne megi		am	s. Applications (1 moning		
Series							
Concept and pro	perties of	series	Operations with se	ries	Absolute convergence		
Positive terms	series. Co	nvergen	ce tests. Alternati	ng	series. Leibniz test for		
series							
Series of function	ıs I.					2.	3+2
Concept of serie	es of func	ctions. P	ointwise converge	nce	. Convergence domains.		
Sums. Converge	nce, differ	rentiation	n and integration of	f po	wer series. Taylor series.		
Maclaurin series	. Lagrange	e residue	es.	_	-		
Series of function	Series of functions II.						
Maclaurin series	of comm	on funct	tions (e ^x , cos x, sir	۱x,	sinh x, cosh x, binomial		
series, etc.) Application for calculating estimate values and definite integrals of					and definite integrals of	3.	3+2
functions.							0.2
Trigonometric se	Trigonometric series. Fourier series and convergence. Decomposition of periodic						
signals into harmonic components of sines.							
Definite integrals II.					4.	3+2	
Improper integrals. Numerical integration (trapezoidal rule, Simpson's rule).						2+3	
Test I.						٦.	3+2
Laplace transfor	m.	d nronor	tion of Lopland tra	naf	arm Lanlaga transforma	6	2 1
Concept, convergence and properties of Laplace transform. Laplace transforms					0.	3+2	
Ordinary differential equations I							
Orainary appendiate equations 1.					narticular and singular		
solutions Initial conditions First order separable and linear differential 7. 3+					3+2		
equations. Special first order differential equations							
Ordinary differential equations II.							
Nonlinear second order differential equations missing x or y. Solving second					0	2 + 2	
order constant coefficient linear differential equations by the method of 8. 3+2					3+2		
undetermined coefficients.							

Holiday	9.	0
<i>Ordinary differential equations III.</i> Solving constant coefficient linear differential equations by the method of Laplace transform. Application of differential equations for electricity.	10.	3+2
<i>Probability theory I.</i> Basic concepts of event algebra. Operations of events. Boolean algebras. Applications for electricity. Probability of events. Kolmogorov axioms. Classical definition of probability.	11.	3+2
<i>Probability theory II.</i> Simple random sampling with and without replacement. Conditional probability and independent events. Random variables and types. Probability density function, cumulative distribution function and properties. Expected value and variance. Types and caracteristics of discrete probability distribution. Binomial, hypergeometric, geometric and Poisson distribution.		3+2
Test 2.	13.	3+2
<i>Probability theory III.</i> Types and caracteristics of continuous probability distribution. Uniform, exponential and normal distribution. Central limit theorem.		3+2

Assessment

Students are expected to attend every lectures and class meetings. Students missing more classes than allowed in the Policy (TVSZ) **may not be given a signature ("banned")** and there will be **no make-up** allowed under any circumstances.

Students are expected to take all tests as scheduled below. Students need to achieve at least score 50 from the maximum score 100 to obtain signature.

	Time	Length	Max. score	Topics
Test1	12th March	45 minutes	50	Double integrals. Series of functions. Improper integrals.
Test 2	7th May	45 minutes	50	Laplace transform Differential equations. Solving differential equations by the method of Laplace transform.
Make-up tests	18th May.	45(75) minutes	50(100)	Topics of the missing tests.

Make-up tests:

Make-up tests are available only for students not "banned".

- Any student not disabled may take an overall make-up test (topics of both test 1 and 2) with duration 75 minutes and max. score 100.
- Any student who has taken one of the tests and missed the other one for documented reasons, may also take a make-up only for the missing test.
- Any student who has taken both tests may take a make-up for the original test with smaller achieved score. In this case the score of the make-up test will be counted, even if it is smaller than the score of the original test. If the achieved score of both original tests are equal, then the student may decide which make-up test to take.
- Any students not banned who could not get the signature in any ways in the autumn semester may take an overall make-up test once on a scheduled date during the first two weeks of the examination term. The overall make-up test of the examination term covers topics of both test 1 and 2 with duration 75 minutes and max. score 100.

Assessment and evaluation: written examination.

Any student may sign up for the exam only after obtaining the signature for the semester. Exam tests contain problem solving (score 50, duration 60 minutes) and theoretical questions (score 20, duration 15 minutes). Any students achieving less than score 35 will fail. Any students achieving at least score 35 will be given a cumulative score. If the student has not taken an overall test then the cumulative score is counted by the score of the exam plus 30 % of the score of the tests of the semester. If the student has taken an overall test then the cumulative score is counted by the score of the exam plus 30 % of the score of the tests of the semester. If the student has taken an overall test then the cumulative score is counted by the score of the exam plus score 15. According to the cumulative score the mark of the exam is the following:

Cumulative score	Mark
86 - 100	"excellent" jeles (5)
74 - 85	"good" jó (4)
62 - 73	"fair" közepes (3)
50 - 61	"pass" elégséges (2)
0 - 49	"fail" elégtelen (1)

Suggested material

 O.V Manturov: A Course of Higher Mathematics, D. Faddeev, I. Sominski: Problems in Higher Algebra 	Publisher Mir. Hardcover 1989, 461 pages, ISBN 5030002669 Publisher Mir. Moscow 1968, 316 pages		
3. RA Adams, Ch Essex: Calculus: A Complete Course,	Publisher: Toronto, Pearson Canada 2009, 973 pages, ISBN 9780321549280		
4. Elliott Mendelson: 3000 Solved Problems in Calculus,	McGraw-Hill, New-York 2009, 455 pages, ISBN 9780071635349		
5. Boris V. Gnedenko: Theory of Probability,	<i>Publisher Mir Moscow 1998,</i> 392 pages,ISBN 978-9056995850		
6. Dr. Baróti Gy Kis M Schmidt E Sréterné dr. Lukács Zs.: Matematika Feladatgyűjtemény, BMF 1190, Bp. 2005			

Budapest, 02-01-12

Dr. Baróti György (responsible)