Assessment and subject description

Óbuda University									
Kandó Kálmán Faculty of Electrical Engineering					Institute of Microelectronics and Technology				
3		code: Digital 7		s KMEDT	11 <i>A</i>	NC	Cro	edits: 2	
	ıng	Semester 2014	2015						
Course:	<u> </u>	D' I	DI D	m 1:		D/1' - D// 1" - CG			
Responsible:									
associate professor staff:						(honorary) full professor			
Prerequisites: Digiális technika I, II							TF 4 : 1	0	
Contact hours						Lab hours: 0	Tutorial	: U	
per week:	l l								
	Assessment and end-of-term grade								
evaluation: Subject description									
Subject description Aims:									
This course will give an overview of the basic concepts and applications of digital technics, from									
Boolean algebra to microprocessors. The material covered roughly corresponds to that contained in									
the introductory three-semester course of the Hungarian language B.Sc. programme. However in									
many respects it will go into deeper depths. The lectures will focus more on the general concepts of									
the subject and less on the practical details. In this respect it is presupposed that the students have									
already acquired a certain level of hands-on experience in digital electronics.									
Basic concepts of digital technics. Combinational logic design. Synchronous sequential circuit									
analysis and synthesis. Arithmetic circuits, adders and multipliers. MOS, CMOS and VLSI digital									
circuits. Microprocessor basics.									
Topics to be covered:									
Topics Week Lesson									
General introduction. Combinational circuits basic concepts. Review of									
Boole algebra and of logic functions.								2	
Numerical minimization, Quine-McCluskey algorithm, example. XOR logic.								_	
Karnaugh map and applications.								2	
Hazards, their elimination. Digital logic building blocks: encoders, decoders,								2	
multiplexers, demultiplexers, comparators, etc.								2	
Programmable logic PLDs. FGPA basics, architecture, examples.								2	
Combinational logic design: case studies. Model ALU design. Arithmetic								2	
circuits, ripple carrier adder, look-ahead logic, multipliers.								4	
Sequential circuits, basic concepts. Flip-flops.								2	
Analysis and synthesis of sequential circuits. Simple examples.									
Analysis and synthesis of sequential circuits. Case studies: Coin operated									
vending machine control, 4-bit parity indicator, Gray-code counter.									
Sequential circuits applications examples. Registers, counters, etc.								2	
Sequential arithmetic circuits.									
Digital logic circuits I. Basic principles (logic families, inverter). MOS									
circuits. CMOS logic, inverter, properties, characteristics, layout. Simple								2	
gates, adder, pass transistor logic.								_	
Digital logic circuits II. Logic circuit generation and families. Bipolar and								2	
TTL. High speed and advanced logic components. Schottky technology,									
advanced CMOS. BiCMOS circuits. Digital logic circuits III. ECL circuits Concrel comparison and evaluation of									
Digital logic circuits III. ECL circuits. General comparison and evaluation of									
different logic circuits and technologies. Trends in VLSI and logic circuits								2	
development. Carbon based electronics.									
Semiconductor memories. Advanced memory concepts and technologies								2	
Microprocessors, review of basic concepts and properties.								2	

End-of-term test.

Assessment and evaluation

Requirements of the signature:

The attendance of lectures is strongly recommended.

Home assignments should be prepared according to the deadlines set.

Type of exam:

Final grade is based on two home assignments and an end-of-term test.

Evaluation of the exam:

1 st home assignment: combinational logic problem solving (30 % each in the final grade).

2 nd home assignment: sequential logic design (25 % in the final grade).

End-of-term test paper (45 % in the final grade).

Suggested material

Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, Budapest, 1990, Műegyetemi Kiadó 2004

Gál Tibor: Digitális rendszerek I. és II. Műegyetemi Kiadó, 2003, 51429, 514291

Benesóczky Zoltán: Digitális tervezés funkcionális elemekkel és mikroprocesszorokkal, Műegyetemi Kiadó, 2002, 55033

Mojzes Imre (szerk.) Mikroelektronika és elektronikai technológia, Műszaki Könyvkiadó, Budapest, 1995

Bálint Pődör: Digital technics (course materials for final year elective English language course), *mti.kvk.uni-obuda.hu*, available also in the University E-learning (Moodle) system

Comment: