Assessment and subject description

Óbuda University									
Kandó Kálmán Faculty of Electrical Engineering					Institute of Microelectronics and Technology				
Subject name and code: General engineering studies KMEÁM11ANDCredits: 3									
full-time				2016/17_fall Semester					
Course: Electrical engineering									
Responsible:	Dr. Bugyjás József PhD		Teaching Dr.Bugyjás József		Dr.Bugyjás József	PhD			
				staff:					
Prerequisites: Tech			Technical documentation KMEMD11AND						
Contact hours per	Lecture: 2	2	Class discussion	on.: 1	Lab	hours: 0	Tutorial:		
week:									
Assessment and evaluation:			written examination						
Subject description									

Aims:

To provide to the engineering students the fundamentals of the forces and strains in the operation and design methods of electromechanical structures and devices. The students should acquire the ability to assess the forces and strains in and the operation of various structural elements *Tasks serving the fulfillment of the aims of the course:*

- Basics of engineering mechanics (statics, strength of materials)
- Analysis of the forces and strains in the operation of various structural elements

The core material, the methods of education, and the requirements of the course should incorporate those knowledge, proficiencies and skills, which make possible to train electrical engineers having convertible knowledge.

Topics to be covered:

Equilibrium of forces in electromechanical structures and devices: basic concepts and laws, forces, basic calculation methods, methods of calculation of resultant forces, and center of gravity, determination of first order moment and of reaction force, concept of constraints

Basics of stress analysis: concept and types of strains, stress-strain functions and diagrams, general problems of design for stress, state of stress and deformation, stresses and deformations in bars

Elements of electromechanical structures and devices: locking elements, moving/mobile elements, driving- and actuating elements.

Topics:	Week	Lessons
Statics:	1.	2+1
General Information: Role of electromechanical structures in electronic devices.		
Basic concepts in engineering mechanics: force, moment. Operations with force		
vectors (addition, translation, calculation of resultant)		
Force Systems: Equilibrium of forces (determination with calculation and	2.	2+1
construction), Distributed force systems, Calculation of centre of gravity.		
Constraints: Equilibrium of mechanical structures, Friction.	3.	2+1
Statics	4.	2+1
Stress of structures, Basic types of stresses. Stress-strain functions and diagrams.		
Relation between stress-strain functions.		
1 st test	5.	2+1
Holiday	6.	
Concept and calculation of mechanical stress, Elastic and plastic deformation,	7.	2+1
Stress-strain diagram, Loadability of materials. Calculation of tensile and bending		
stresses, Differential equation of elastic fibre		
Shear and torsion stresses, calculations. Concept of deflection and deformation,	8.	2+1
calculations. Combined stresses. Design of mechanical structures for simple and		
combined static stresses		

Cases of alternate loads. Fatigue of materials, Design theories. Work of	9.	2+1		
deformation. Castigliano's theorem, examples				
2 nd test	10.	2+1		
Elements of electromechanical devices	11.	2+1		
Joint-elements of electromechanical devices. Classification of joints. Joints with				
elastic deformation.				
Plastic deformations. Permanent joints Application area.	12.	2+1		
Driving and actuating elements in electromechanical devices, bearings, shafts,	13.	2+1		
guides. Application area.				
Make-up tests, advanced examination	14.	2+1		
* Class meetings accomodate program of the lectures with calculation of examples				
and practical solution of problems				
Assassment and avaluation.				

Assessment and evaluation:

Students are recommended to attend lectures, class meetings are mandatory. Requirements of the signature:

- test encompassing lecture topics

- home assignment and a presentation about it.

Admittance to examination is a home assignment and presentation submitted on due date and at least 40% level on each mandatory test.

Failed tests can be made up last week.

Missing home assignments can be made-up till the last class meeting for a fee.

Prerequisites of the advanced examination are the minimum of mid-semestrial results of 70%.

Evaluation of the exam:

Written examination including the theoretical material of the semester.

Evaluation is composed by scores. System of scores is made out by the responsible.

The threshold for pass mark (including the results of home assignment and mid-semester test) is 40 %. Pass mark will incorporate test and examination results.

Suggested Materials:

R.C. Hibbeler: Mechanics of Materials 2011 Prencice Hall ISBN-13 978-981-06-8509-6

Putoki István: Basics of mechanics 213/2004 Budapest

Meriam: Engineering Mechanics Statics SI version 2008 Wiley ISBN 13: 9780471787020

Jim Morrison: Statics for Engineers 2009 Wiley ISBN 13: 9780470745564

Strauch: Classical Mechanics 2009 Springer ISBN 13: 9783540736158

Auxiliary materials:

Auxiliary materials (like brochures, videos, electronic curricula) can be found on the network, as well as formal requirements of home assessments ...