Assessment and subject description			
Óbuda University Institute of Microelectronics and Technology			
Kandó Kálmán Faculty of Electrical Engineering			
Subject name and code: Analogue and Digital Technics KMEDT1AMND Credits: 5			
Full-time, Spring Semester			
Course: Technical Management			
Responsible: Balázs Kovács, Ph.D. Teaching Márk Horváth			
staff: András Mészáros			
Prerequisites: Electrotechnics, KMEEL1AMND			
Contact hours Lecture: 2 Class discussion: 2 Lab hours: 0 Tutorial:			
per week:			
Assessment and Exam			
evaluation:			
Subject description			
Aims: The subject's aim is to understand the basic properties and applications of basic semiconductor			
devices and circuits such as diodes, transistors and operational amplifiers.			
This course will give an overview of the basic concepts and applications of digital technics. In the			
course of lectures, classroom-tutorials and laboratory exercises the future technical management			
should acquire solid knowledge and sufficient proficiency in the functioning, operation, design and			
applications of digital systems.			
Topics to be covered: P-N junction, diodes. Bipolar transistors. Field-effect transistors. Fundamentals			
of digital technics. Logic (Boolean) algebra, logic operations and functions. Combinational logic,			
analysis and synthesis and implementation of logic circuits. Binary arithmetics, algorithms and			
circuits. Code systems, code conversion. Combinational circuit functional building blocks, properties and applications.			
Topics Week Lessons			
Semiconductors.			
Intrinsic and doped semiconductors, n and p type crystal structures. Majority and minority charge carriers. Conductivity in semiconductors, drift and 1. 2+2			
diffusion current. p-n junction, space charge region, diffusion potential.			
Behavior of p-n junction due to external bias.			
Application of semiconductor diodes.			
The semiconductor diode. Thermal dependence and capacity of p-n junction. 2. 2+2			
Concept of operating point, static and dynamic resistance.			
Bipolar transistor.			
Structure, properties, characteristics and function of bipolar transistors. 3. 2+2			
Setting of operating point, thermal dependence.			
Amplification with bipolar transistor.			

2+2

2+2

2+2

2+2

2+2

2+2

4.

5.

6.

7.

8.

9.

Physical process of amplification. CE, CC, CB basic circuits. Parameters of

Structure and operation of MOS-FETs. Enhancement and depletion MOS-

Structure and operation of J-FET. Characteristics. Setting of operating point;

Fundamental concepts of digital technics and of logic networks. Specific

characteristics of digital technics. Digital (binary) representation.

amplifiers.
MOS-FET.

J-FET.

Test1

Official break

FET. Characteristics. CMOS circuits.

thermal dependance. Basic circuits.

Introduction to and applications of logic algebra. Description of logic connection: textual, algebraic form, truth table, logic diagram. Boolean algebra: axioms and theorems. Fundamental logic operations.	10.	
Logic functions, fundamental concepts. Two-variable logic functions. Fully and incompletely specified logic functions. Canonic forms of logic functions. Disjunctive (sum-of-products, SOP), conjunctive (product-of-sum, POS) canonic forms, minterms and maxterms.	11.	2+2
Manipulation and transformation of logic functions. Graphic representation: Veitch diagrams and Karnaugh maps). The concept and methods of logic function minimization.	12.	
Number systems, fundamentals. Binary numbers. Arithmetic operations in the binary number systems.	13.	2+2
Codes and encoding, fundamental concepts. Numeric and alphanumeric codes. Pure binary codes (direct, 1s complement, 2s complement codes. Arithmetic operations in 1s and 2s complement codes. Tetrad codes, BCD codes. Arithmetic operations in tetrad and BCD codes Test2	14.	2+2

Assessment and evaluation

Requirements of the signature:

To attend the lectures and class discussion is obligatory. Above that it is required to pass two tests.

Type of exam:

Written and oral

Evaluation of the exam:

To pass the exam to reach at least 50% is required.

Suggested material

Rita Lovassy: Digital Technics http://uni-obuda.hu/users/lovassyr/Lovassy_Digital_technics.pdf Bálint Pődör: Digital technics I (course materials for 1st year English language course), mti.kvk.uni-obuda.hu

Bálint Pődör: Digital technics (course materials for final year elective English language course), mti.kvk.uni-obuda.hu

Arató Péter: Logikai rendszerek tervezése, Tankönyv kiadó, Budapest, 1990, Műegyetemi Kiadó 2004

Zsom Gyula: Elektronikus áramkörök I.A Bp. 1991. KKMF 1040

Molnár Ferenc – Zsom Gyula: Elektronikus áramkörök II.A I. – II. kötet Bp. 1991. KKMF 1044

Comment:

The lecture's materials are the basics of the learning process. They could be found on the concerned web sites of the university.