Assessment and subject description

Óbuda Universi								
Kandó Kálmán Faculty of Electrical Engineering					Institute of Microelectronics and Technology			
Subject name and code: Physics II. KEXFI2ABNE Full-time, Spring Semester 2018-2019/II Credits: 4								
	_	-2019/11	-					
Course: Electric		1. /	Tarabina	D	V-4-1' C ()	ni. n		
Responsible: Dr. Katalin Gambár Ph.D		Teaching staff:	Dr. Katalin Gambár Ph.D					
	associate		Stall:					
	professor							
Prerequisites: KEXFI1ABNE								
Contact hours	Lecture: 2	cture: 2 Class discussion: 1			Lab hours: 0	Tutorial	: 0	
per week:								
Assessment and Test (problem solving), written exam								
evaluation:								
Subject description								
Aims: to give stabile foundation to the professional subjects and to help to understand the physical								
basis of the professional literature in the future works.								
Topics to be cove	ered: atomic phys.	ics; phys	sics of cond	lense	d matter; nuclear p			
		Topics				Week	Lessons	
The theory of sp	ecial relativity					1.	2+1	
The theory of special relativity						2.	2+1	
The theory of special relativity						3.	2+1	
The boundary of the classical concepts :Black body radiation, photo effect						4.	2+1	
Compton effect, wave-particle duality						5.	2+1	
Classical models of atom (Rutherford's model, Bohr's model, quantum numbers, Pauli exclusion principle)						6.	2+1	
Quantum mechanics :Heisenberg's uncertainty relation						7.	2+1	
Quantum mechanics: Schrödinger equation, applications of Schrödinger equation					ons of	8.	2+1	
Condensed mat	ter physics :Hall	effect E	llectronic b	and	structure	9.	2+1	
Brake						10.	2+1	
test						11.	2+1	
Nuclear physics : Nuclear force, models						12.	2+1	
Summary						13.	2+1	
Repair test					14.	2+1		

Assessment and evaluation

Requirements of the signature: less than 30% missed classes, write one of the two tests minimum 50%

Type of exam: written.

Evaluation: The final grade is made by adding the points from the test and the exam. Test - maximum 50 points, exam - maximum 50 points.

Summary of points: maximum points can be obtained by summation: 50+50 = 100.

The levels for grades are

Evaluation	Points obtained
1	0 - 49
2	50 – 61
3	62 –74
4	75–74
5	88 - 100

Suggested material

Alvin Hudson, Rex Nelson: University Physics

The Feynman Lectures on Physics.

Balázs-Sebestyén: Fizika OE KVK 2065 (in Hungarian).

Comment:

Minor shifts may occur, because lecturers take into account levels of understandings and ability of notes-taking of the students, and because lecturers show examples belong to the given chapters.