Assessment and subject description

Óbuda Universi Kandó Kálmán F	•	Electric	al Engir	eering	In	stitute of Microel	ectron	ics and T	echnology	
			Ų	•		s, KEEVR5ABN				
Course: Electrica	l Enginee	ring								
Responsible:).			
	Andrea,			staff:						
Prerequisites:		none								
Contact hours	Lecture: 2 Class discussion: 0 Lab hours: 0					Tutoria	: 0			
per week:										
Assessment and	exam									
evaluation:										
			Sı	ıbject desc	rip	tion				
Learning objecti			to and	basic know	wle	dge of materials	scienc	ce. Relati	ons among	
preparation meth		ture and	1 propert	ies of mate	rial	8.				
Topics to be cove	ered:		T •					***	.	
			Topics					Week	Lessons	
Introduction to materials science. Relations between composition, structure,							e,	1.	2	
processing and properties of materials.									-	
Structure of atoms. Bohr model and wave mechanics' models. The periodic										
table. Characteristic parameters. Atomic bonding. Relation between bonding								2.	2	
and material beha					_					
Crystal structure. Types of crystals, lattice parameters. Packing factors, densities. Real crystals. Types of defects, lattice vibrations. 3.								2		
	• •	A								
Methods of investigation of crystal structure. Optical and electron										
									2	
electron diffractio		.1.1 .		.1.1 .						
Transport in materials. Equilibrium vs. non-equilibrium. Electrical and heat								_	•	
transport. Material transport: steady-state and non-steady-state diffusion.								5.	2	
Oxidation. Test 1								6.	2	
Alloys. Phase transitions and phase diagrams.								<u> </u>	2	
								7.	4	
Mechanical properties of materials. Deformation, stress and strain.								8.	2	
Ductility, toughness, hardness. Mechanical failures.										
Electrical properties of materials. Band theory. Metals, semiconductors, insulators.								9.	2	
Magnetic properties of materials. Types of magnetism. Ferro- and										
ferrimagnetism. Magnetic storage of information.								10.	2	
	<u> </u>	<u> </u>			sol	ids. Absorption.				
Optical properties of materials. Light interaction with solids. Absorption, reflection, transmission, refraction, polarization and their relation to electron								11.	2	
structure. Light e										
New results in Material Sciences								12.	2	
Test 2								13.	2	
								13.		

Assessment and evaluation

<u>Requirements of the signature</u>: Regular class attendance is a prerequisite for receiving credit in the course. Course attendance is tracked and maximum 2 absences are allowed. Students whose absences exceed 2 will be dropped from the course. Laboratory mark should exceed 2.

Students will take two tests during the course. The minimum requirement to pass each test is to achieve 50% of total scores. Students can retake the test for free in case they do not reach the minimum requirements. Final correction opportunity is within the first 10 days of the examination period. (Aláíráspótló vizsga)

<u>Type of exam</u>: Written, covering the all topics of the course.

Evaluation of the mark: Mark is determined by the table below:

Mark	Total score
5	85-100 %
4	74-84 %
3	63-73 %
2	50-62 %
1	0-49 %

Suggested material

Fundamentals of Materials Science and Engineering

William D. Callister, Jr.; David G. Rethwisch; 910 pages; John Wiley & Sons; 4 Edition (2013);

ISBN: 978-1-118-32269-7

Semiconductor Devices: Physics and Technology

Simon M. Sze, Ming-Kwei Lee; 592 pages; John Wiley & Sons; 3 Edition (2012); ISBN-10: 0470537949; ISBN-13: 978-0470537947

Comment: Learning materials will be uploaded in the Moodle.