Assessment and subject description

Óbuda University	1	1							
Kandó Kálmán Faculty of Electrical Engineering Institute of Microelectronics an	d Techno	01							
Subject name and code: Mathematics II KEXMA2ABNE Full time, Spring Semester (2020-21)		Credits: 6							
Course: Electrical engineering									
Responsible: Dr. Kovács, Judit Teaching staff: Dr. Kovács, Judit									
Prerequisites:Mathematics I-Calculus INMXAN1EBNEContact hours per week:Lecture:3Class discussion:3Lab hours:0Tutorial:0									
Contact hours per week:Lecture:3Class discussion:3Lab hours:0Assessment and evaluation:written examination	Tutoria	l: U							
Subject description									
Aims:	roblomai	n connection							
Emphasis is on basic topics of mathematics. Class discussions help students to solve p									
with the topics. This course will promote the development of algebraic and analytic skill understanding.		is conceptual							
Topics to be covered:									
Integral calculus. Multivariable calculus. Laplace transform. Differential equations. Pro	obability	Theory							
Series of numbers and functions. Vector Calculus.	Juanty	Theory.							
Topics	Week	Lessons							
Lecture:09/02	WEEK	Lessons							
Some topics in integral calculus.									
Method of partial fraction decomposition	1.	3+3							
Hyperbolic functions.									
Lecture: 16/02									
Itivariable functions									
Basic concepts of multivariable functions.	2.	3+3							
Partial derivatives. Concept of double integral. Geometric meaning and properties of	2.	515							
double integrals. Calculating double integrals on rectangle domains.									
Lecture: 23/02									
Laplace transform									
Concept, convergence and properties of Laplace transform. Laplace transforms for									
basic functions. Inverse Laplace transform.	2								
Ordinary differential equations I3.									
Concept of ordinary differential equations. General, particular and singular solutions.									
Initial conditions. Solving constant coefficient linear differential equations by the									
method of Laplace transform.									
Lecture:02/03									
Ordinary differential equations II	4.	3+3							
First order separable differential equations. Solving first and second order constant									
coefficient linear differential equations by the trial method.									
Lecture:09/03									
Probability Theory I	5.	3+3							
Basic concepts of event algebra. Operations of events.									
Probability of events. Kolmogorov axioms. Classical definition of probability.									
Lecture:16/03	6.	3+3							
Test 1									
Lecture: 23/03									
Probability Theory II Conditional probability and independent events 7 3 3									
Conditional probability and independent events. 7. 3+3									
Concept of random variables and types. Discrete probability distributions. Expected value and variance. Uniform, binomial and Poisson distribution.									
	l								

Lecture: 30/03						
Probability Th	porv III					
		n. Distribution functi	on density fund	ction and	8.	3+3
	pected value and var		on, density rune	and	0.	515
	prenential and normal of					
Holiday:06/04						
11011uay.00/04					9.	0+3
Lecture:13/04						
Series of num	bers.					
Concept and pa	roperties of series.					
Series of funct	tions				10.	3+3
Concept of ser	ies of functions. Con	nvergence domains.				
Concept and co	onvergence of powe	er series. Applications	s (Taylor series)).		
Trigonometric	series. Fourier serie	es and convergence.				
Lecture: 20/04		~				
Vector Calcult	us I					
		ns of a scalar varial	ble. Geometric a	and physical	11.	3+3
	Differentiability.			1 5		
L						
Lecture:27/04						
Vector Calcula		••••••••••••••••••••	hla		10	a . a
-		ns of a vector varial	ole.		12.	3+3
Differentiabilit	ty (gradient). Differe	ential operator.				
Lecture:04/05						
Vector Calcul	us III					
Concept of veo	ctor-valued functio	ons of a vector varial	ble.			
Divergence, curl.					13.	3+3
Potential. Conservative fields.						
	of vector fields.					
Lecture: 11/05						
<i>Test 2</i>					14.	3+3
10312		Assess	ment			
Requirements	s of the signature:					
Homework						
Students are ex	spected to hand in h	omework as detailed	in the moodle s	site of the course	. Student	s need to
		l score of the homew				
Tests				~		
	spected to take 2 tes	sts as scheduled below	w. Students need	d to achieve at le	ast 50% :	from the
		h test to obtain signat				
		of onsite tests, <u>no ele</u>				
		Procedures of Óbuda				
		ng, the test score is 0		or juagit	0	0
				r -	r •	
	Time	Length	Max. score		Fopics	romia hla
	We -1- C	()	50	Integral calculu		
$T_{1} \neq 1$	Week 6	60 minutes	50	functions. Lapla		iorm.
Test 1						
Test 1				Differential equ		
Test 1 Test 2	Week 14	60 minutes	50	Differential equiprobability theory Fourier series.	ory.	

Banned

Students handing in less than 8 homeworks will be given "banned". Students missing both tests will be given "banned".

Signature retake exam in the examination term:

The signature retake exam is available only for students not "banned".

Students who could not get signature in the semester may take an overall make-up test once on a scheduled date at the beginning of the examination term.

The retake examination covers topics of both tests 1 and 2 with duration 75 minutes. Students achieving at least 50% from the maximum score will get the signature.

Type of exam: written examination

Exams will be either online or onsite, depending on the actual situation. <u>No electronic devices are allowed</u> to be used during onsite exams. Code of Student Conduct and Disciplinary Procedures of Óbuda University is the base of judging cheating on exams. In the case of cheating, the mark of the exam is "fail" (1). Students may register for the exam only after obtaining signature.

Evaluation of the exam:

Exam tests contain problem solving and theoretical questions (duration 75 minutes). According to result of the exam, the mark is the following:

Result	Mark
90 - 100%	"excellent" jeles (5)
80 - 89%	"good" jó (4)
70 - 79%	"fair" közepes (3)
51 - 69%	"pass" elégséges (2)
0 - 50%	"fail" elégtelen (1)

Recommended reference resources

1. Kovács, J., Schmidt, E., Szabó, L.A.: Mathematics, ÓE KVK 2103, Budapest, 2013

2. Kovács, J., Schmidt, E.: Mathematics. Problem Solving, E-learning

3. RA Adams, Ch Essex: Calculus: A Complete Course, Publisher: Toronto, Pearson Canada 2009, 973 pages, ISBN 9780321549280

4. Elliott Mendelson: 3000 Solved Problems in Calculus, McGraw-Hill, New-York 2009, 455 pages, ISBN 9780071635349

5. Dr. Baróti Gy. - Kis M. - Schmidt E. - Sréterné dr. Lukács Zs.: Matematika Feladatgyűjtemény, BMF 1190, Bp. 2005

22-01-21

Kovács Judit