Assessment and subject description

Óbuda University									
Kandó Kálmán Faculty of Electrical Engineering					Institute of Microelectronics and Technology				
Subject name and code: Physics II. KEXFI2ABNE, KVX6ABNE									
Credits: 4									
Full-time, Spring Semester 2020-2021/II									
Course: Electrical engineering									
Responsible: Dr. Katalin Gambár			Teaching	Dr. Katalin Gambár Ph.D					
Ph.D			staff:						
associate									
	professo	r							
Prerequisites:		KMEF	I11AND), KVX5AE	INE				
Contact hours	Lecture	e: 2	Class d	iscussion: 1	Lab hours: 0	Tutorial	: 0		
per week:									
Assessment and	exam								
evaluation:									
Subject description									
<i>Aims</i> : to give stabile foundation to the professional subjects and to help to understand the physical									
basis of the professional literature in the future works.									
						physics			
<i>Topics to be covered: atomic physics; physics of condensed matter; nuclear</i> Topics							Lessons		
The theory of special relativity Kinematics							2+1		
							2 + 1		
The theory of special relativity2.2+1									
DynamicsImage: Constraint of the classical concepts: Black body radiation, photo3.2+1									
-	3.	2+1							
effect									
The boundary of the classical concepts:Compton effect, wave-particle4.2+1									
duality									
Classical models of atom (Rutherford's model, Bohr's model, quantum5.2+1									
numbers, Pauli exclusion principle)									
Classical models of atom (Rutherford's model, Bohr's model, quantum 6. 2+3									
numbers, Pauli exclusion principle)									
Quantum mechanics:Heisenberg's uncertainty relation, 7. 2+1									
Schrödinger equation.									
Applications of Schrödinger equation.8.2+1									
Condensed matter physics :metallic bond, conductivity 9. 2+									
	1.0			,	·				
Condensed matter physics :Hall effect Electronic band structure.10.2+1									
								Problems 11. 2+1	
							- 1		
Condensed matter physics: Magnetic properties. Piezoelectricity. Liquid 12. 2+									
crystals.									
Condensed matter physics : Superconductivity, luminescence. Lasers 13. 2+1									
Contensed matter physics . Superconductivity, funninestence, Lasers 15. 24									
Problems						14.	2+1		
							2+1		
L							L		

Assessment and evaluation

Requirements of the signature:

The absenteeism rate should not exceed 30% of the class hours.

Submission of homework issued during the semester by the designated dates.

Type of exam:

The test contains questions for the theories (50 points) and examples (50 points). A list of theoretical knowledge and possible questions will be given to students before the examination period.

Evaluation:

Summary of points: maximum points can be obtained by summation: 50+50 = 100. Evaluation:

Evaluation	Points obtained
1	0-49
2	50 - 61
3	62 – 74
4	75-87
5	88-100

Suggested material

Alvin Hudson, Rex Nelson: University Physics

Comment:

Minor shifts may occur, because lecturers take into account levels of understandings and ability of notes-taking of the students, and because lecturers show examples belong to the given chapters.